Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AIプラットフォームにおけるMLflowの利用について
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
LINEヤフーTech (LY Corporation Tech)
PRO
December 15, 2025
Technology
2
280
AIプラットフォームにおけるMLflowの利用について
2025年12月9日に開催された「AIエージェント/MLモデル開発を加速するMLflow:実践ノウハウ共有」での発表資料です。
LINEヤフーTech (LY Corporation Tech)
PRO
December 15, 2025
Tweet
Share
More Decks by LINEヤフーTech (LY Corporation Tech)
See All by LINEヤフーTech (LY Corporation Tech)
日本語テキストと音楽の対照学習の技術とその応用
lycorptech_jp
PRO
1
450
Java Virtual Threads, Kotlin Coroutines, Go Goroutinesの比較
lycorptech_jp
PRO
1
120
マイクロサービスアーキテクチャのトレードオフとコンポーネント増加について〜Yahoo!ニュース〜
lycorptech_jp
PRO
0
46
MLflowダイエット大作戦
lycorptech_jp
PRO
1
250
4%ルールとN1思考──不確実性に対抗するディスカバリー検証
lycorptech_jp
PRO
1
220
初めてのOSS貢献の雑ガイド
lycorptech_jp
PRO
1
61
LINEスタンプ開発の日常
lycorptech_jp
PRO
1
750
LINEスタンプサーバーサイド
lycorptech_jp
PRO
0
750
Yahoo!ファイナンスにおける生成AIを活用した新機能紹介
lycorptech_jp
PRO
0
850
Other Decks in Technology
See All in Technology
猫でもわかるKiro CLI(セキュリティ編)
kentapapa
0
140
Why Organizations Fail: ノーベル経済学賞「国家はなぜ衰退するのか」から考えるアジャイル組織論
kawaguti
PRO
1
240
ブロックテーマ、WordPress でウェブサイトをつくるということ / 2026.02.07 Gifu WordPress Meetup
torounit
0
210
【Oracle Cloud ウェビナー】[Oracle AI Database + AWS] Oracle Database@AWSで広がるクラウドの新たな選択肢とAI時代のデータ戦略
oracle4engineer
PRO
2
190
(技術的には)社内システムもOKなブラウザエージェントを作ってみた!
har1101
0
370
usermode linux without MMU - fosdem2026 kernel devroom
thehajime
0
240
私たち準委任PdEは2つのプロダクトに挑戦する ~ソフトウェア、開発支援という”二重”のプロダクトエンジニアリングの実践~ / 20260212 Naoki Takahashi
shift_evolve
PRO
2
250
ClickHouseはどのように大規模データを活用したAIエージェントを全社展開しているのか
mikimatsumoto
0
300
Bill One急成長の舞台裏 開発組織が直面した失敗と教訓
sansantech
PRO
2
420
登壇駆動学習のすすめ — CfPのネタの見つけ方と書くときに意識していること
bicstone
3
140
Context Engineeringの取り組み
nutslove
0
410
M&A 後の統合をどう進めるか ─ ナレッジワーク × Poetics が実践した組織とシステムの融合
kworkdev
PRO
1
550
Featured
See All Featured
The Impact of AI in SEO - AI Overviews June 2024 Edition
aleyda
5
740
Test your architecture with Archunit
thirion
1
2.2k
Public Speaking Without Barfing On Your Shoes - THAT 2023
reverentgeek
1
310
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.6k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.3k
Noah Learner - AI + Me: how we built a GSC Bulk Export data pipeline
techseoconnect
PRO
0
110
Agile that works and the tools we love
rasmusluckow
331
21k
Leveraging Curiosity to Care for An Aging Population
cassininazir
1
170
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
260
Done Done
chrislema
186
16k
From π to Pie charts
rasagy
0
130
Transcript
© LY Corporation Public AIプラットフォームにおける MLflowの利用について LINEヤフー DATA&AI CBU AI
CBU 湯原 基貴
© LY Corporation Public 湯原 基貴 LINEヤフー DATA&AI CBU AI
CBU AIPFユニット 〜2022.02 通信会社、SIerのR&Dチーム • プライベートIaaS基盤の開発 • 分散機械学習ライブラリの開発 • 機械学習(深層学習)を利用したPoC • 機械学習基盤の研究 2022.03〜 LINEヤフーに中途入社 AIプラットフォームの開発、運用 • MLflow • ACP を担当
© LY Corporation 3 AIプラットフォーム(AIPF) Public Google Cloud「MLOps: ML における継続的デリバリーと自動化のパイプライン」より引用
© LY Corporation 4 AIプラットフォーム(AIPF) Public Google Cloud「MLOps: ML における継続的デリバリーと自動化のパイプライン」より引用
• MLOpsを支える内製ツール、OSSを全 社向けに提供 • 約100サービス/プロダクトが利用 • オンプレミス環境のマルチテナント Kubernetes環境(ACP)上に構築
© LY Corporation Public • 学習の観点 • ML/DLモデル学習結果の記録 • パラメータ
• メトリクス • モデル(artifact) • グラフ • (最近)LLMに対する実験結果の記録 • Trace • Evaluation(LLM as a Judgeなど) • 推論の観点 • デプロイするモデルの保存場所 5 AIPFにおけるMLflowの役割
© LY Corporation Public • サービス(チーム)ごとにMLflowサーバが欲しいという要望 • リソースの効率的な利用のためにマネージドサービスとして提供 マネージドなMLflowの提供 ユーザー
Dragon(オブジェクトストレージ) ACP 学習Pod MySQL(プライベートDBaaS) アーティファクトを格納 メタ情報を格納 MLflow Pod Ingress Service サービス MLflow MLflow Pod
© LY Corporation Public • MLflowへのアクセス(モデルやデータへのアクセス)は制限したい • モデル学習はACPのPod上で実施 • ユーザだけでなく、プログラム(サービス)からMLflow(API)にアクセスする
• サービス間の認証認可フローを考慮する必要がある 7 サービス間の認証認可フロー ユーザー ACP 学習用Pod サービス 認証 認可 MLflow
© LY Corporation Public • ユーザだけではなく、サービス(プログラム)からのアクセスも制御できること • ロールベースのアクセス制御(RBAC)が可能なこと • MLflow本体には独自の機能を追加せずに認証認可が実現できること
• 定期的なアップデートを容易にするため 8 AIPF MLflowにおける認証認可の要件
© LY Corporation Public • OAuth2.0にはサービス間の認証認可フローとしてClient Credentials Grant Flowが定義されている •
ユーザの介在なしにサービスが自分自身を認証してAccessTokenを取得し、保護されたAPIにアクセ スするためのフロー 9 Client Credentials Grant Flow
© LY Corporation Public • MLflowにおけるサービス間認証認可フローを Client Credentials Grant Flow
に基づいて実現する • サービス(プログラム)に必要な機能 • Authorization Serverとの認証 • Access Tokenの取得 • MLflow(=Resource Server)に必要な機能 • Access Tokenの検証 • 認可チェック 10 Client Credentials Grant Flow
© LY Corporation Public • LINEヤフーでAthenzによる認証認可プラットフォームが社内で提供されている • Athenz • OAuth2.0に準拠したサービス間認証、RBACをサポートするOSS
• 米国のYahoo Inc. とLINEヤフーが協力して開発に貢献 • CNCF(Cloud Native Computing Foundation)のSandboxプロジェクト • AthenzはClient Credentials Grant Flowをサポートしている • MLflow(とACP)においてもAthenzを利用してサービス間の認証認可フローを実現している 11 AthenzによるClient Credentials Grant Flowの実現
© LY Corporation Public • AthenzにはSPIFFEの仕様に基づいて、サービスを証明するためのX509証明書形式のClient Certを発行す る機能(Athenz Copper Argos)がある
• SPIFFE: Secure Production Identity Framework For Everyone • 分散システムにおける安全なID管理のためのオープン標準仕様 • Client CertによりAuthorization ServerとmTLS通信することで自身が正当なサービスであることを証明 できる • ACPではPodのデプロイ時にAthenz Copper Argosを利用してmTLS認証を行い、AccessTokenを取得す る機能を実装している • Kubernetesのwebhookを用いて自動的に認証、AccessToken取得用のcontainerを追加 • Podが起動したときにはAccess Tokenが配置されている • Pod上で起動するサービス(例:モデル学習プログラム)はAccess Tokenの取得を意識することなく 利用できる 12 AIPF MLflowにおけるサービス間の認証認可の実現方法 サービスの認証とAccess Tokenの取得 参考資料: Athenz & Spire によるアクセス制御
© LY Corporation Public • MLflowサーバに対してResource Serverの 機能を追加する必要がある • Athenzのプロダクトの1つである
Authorization Proxyを利用 • Kubernetesのサイドカーとして動く リバースプロキシ。Access Tokenの 検証や認可チェック 13 AIPF MLflowにおけるサービス間の認証認可の実現方法 MLflowにおけるAccess Tokenの検証、認可チェック
© LY Corporation Public 14 AIPF MLflowにおけるサービス間の認証認可の実現方法 • APIリクエスト時は AuthorizationヘッダにAccess
Tokenを設定 • MLflowのPythonライブラリを 使用するときは、環境変数 MLFLOW_TRACKING_TOKEN にAccess Tokenを設定
© LY Corporation Public • マネージドなMLflowサーバを提供するために認証認可が必要 • ユーザだけではなく、サービス(プログラム)に対しても認証認可を行う必要がある • OAuth2.0で定義されたサービス間の認証認可フロー(Client
Credentials Grant Flow)の実現 • Athenzによる認証認可プラットフォームと連携して実現 • ACPとも連携し、Access Tokenの取得を意識せずに利用(MLflowのAPIにアクセス)できるようにして いる 15 まとめ
© LY Corporation Public • MLflowのprometheus-exporterからのメトリクスの取得 • HTTPステータス、処理時間 • エラー監視、パフォーマンス監視に利用
• Ingressからアクセスログを取得 • MLflow API(パス)の取得、集計 • 週次、月次のMLflowの利用状況の分析に利用 MLflowの利用状況の取得 16 Supplement: AIPF MLflowの利用状況
© LY Corporation Public • 約40サービスに対してMLflowを提 供 • 増減はありつつも2024年4月からお よそ4倍に増加
17 1日の平均アクセス数
© LY Corporation Public • 新規Runやモデル参照数は増加 • 新規Model数はほぼ一定 • 単純に自サービスのモデル学習結果
を記録する以外の利用方法も増えて いる • 日次のモデル評価を記録 • AutoML的なプロダクトの backendとして利用 18 新規Run、新規モデル、モデル参照数(1日あたりの平均アクセス数)
© LY Corporation Public