Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Tic Tac Type: Dependent Types with Idris

Tic Tac Type: Dependent Types with Idris

Functional programming provides a fundamental basis for reasoning about our programs and building out principled abstractions. However, it is not enough on its own and we also rely on other programming tools to aid in constructing programs correctly and efficiently. An advanced example of such a tool is dependent types; that is, types that depend on values. Dependent types can be used to provide strong guarantees about a program's behaviour that are difficult or impossible to express with traditional type-systems.

Dependent types are gaining traction in mainstream FP languages such as Haskell (via language extensions) and Scala (via path-dependent sub-typing), but disappointingly, they are still less accessible to everyday programming than they can and should be. To help address this problem, Idris is a new programming language built from the ground up with the explicit goal of having better support for dependent types (as well as a number of other useful tools such as totality checking and tactic based theorem proving).

This talk will step through an end-to-end example in Idris, from fundamentals like building type-safe APIs, and performing IO through to building user interfaces. By the end of the talk we will have identified the strengths of this programming model, the practicalities of using them in Idris (in contrast to Scala and Haskell) and produced a battle-hardened, multi-player, tic-tac-toe game ready for production.

Mark Hibberd

May 09, 2014
Tweet

More Decks by Mark Hibberd

Other Decks in Programming

Transcript

  1. Data is validated with respect to other data ! If

    types are to capture valid data precisely, we must let them depend on terms” - Conor McBride, Winging It “
  2. idris haskell ! 1 infixr 7 :. 2 3 data

    List a 4 = Nil 5 | a :. List a 6 7 headOr :: a -> List a -> a 8 headOr x Nil = x 9 headOr _ (h :. _) = h 10 11 type String = 12 List Char 1 infixr 7 :. 2 3 data List a 4 = Nil 5 | (:.) a (List a) 6 7 headOr : a -> List a -> a 8 headOr x Nil = x 9 headOr _ (h :. _) = h 10 11 String : Type 12 String = List Char
  3. idris haskell ! 1 infixr 7 :. 2 3 data

    List a 4 = Nil 5 | a :. List a 6 7 headOr :: a -> List a -> a 8 headOr x Nil = x 9 headOr _ (h :. _) = h 10 11 type String = 12 List Char 1 infixr 7 :. 2 3 data List a 4 = Nil 5 | (:.) a (List a) 6 7 headOr : {a: Type} -> (x: a) -> (xs: List a) -> a 8 headOr {a} x Nil = x 9 headOr {a} _ (h :. _) = h 10 11 String : Type 12 String = List Char
  4. idris haskell ! 1 data Nat 2 = Z 3

    | S Nat ! 1 data Nat 2 = Z 3 | S Nat
  5. idris haskell ! 1 {-# LANGUAGE GADTs #-} 2 3

    data Nat where 4 Z :: Nat 5 S :: Nat -> Nat ! 1 data Nat : Type where 2 Z : Nat 3 S : Nat -> Nat ! !
  6. idris haskell ! 1 {-# LANGUAGE GADTs #-} 2 {-#

    LANGUAGE KindSignatures #-} 3 4 data Nat :: * where 5 Z :: Nat 6 S :: Nat -> Nat ! 1 data Nat : Type where 2 Z : Nat 3 S : Nat -> Nat ! ! !
  7. idris haskell 1 {-# LANGUAGE GADTs #-} 2 {-# LANGUAGE

    KindSignatures #-} 3 4 data Z 5 data S a = S a 6 7 data Nat a :: * -> * where 8 Zero :: Nat Z 9 Succ :: Nat n -> Nat (S n) 10 11 data Fin n :: * -> * where 12 FZero :: Nat n -> Fin (S n) 13 FSucc :: Nat n -> Fin n 14 -> Fin (S n) ! 1 data Nat : Type where 2 Z : Nat 3 S : Nat -> Nat 4 5 data Fin : Nat -> Type where 6 fZ : Fin (S k) 7 fS : Fin k -> Fin (S k) ! ! ! ! ! ! !
  8. idris haskell ! 1 {-# LANGUAGE GADTs #-} 2 {-#

    LANGUAGE DataKinds #-} 3 {-# LANGUAGE KindSignatures #-} 4 5 data Nat :: * where 6 Z :: Nat 7 S :: Nat -> Nat 8 9 data Fin :: Nat -> * where 10 FZ :: Fin Z 11 FS :: Fin n -> Fin (S n) ! 1 data Nat : Type where 2 Z : Nat 3 S : Nat -> Nat 4 5 data Fin : Nat -> Type where 6 fZ : Fin (S k) 7 fS : Fin k -> Fin (S k) ! ! ! !
  9. ! 1 data Vect : Nat -> Type -> Type

    where 2 Nil : Vect Z a 3 (::) : (x : a) -> (xs : Vect n a) -> Vect (S n) a ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
  10. ! 1 data Vect : Nat -> Type -> Type

    where 2 Nil : Vect Z a 3 (::) : (x : a) -> (xs : Vect n a) -> Vect (S n) a 4 5 v2 : Vect 2 String 6 v2 = "hello" :: "idris" :: Nil ! ! ! ! ! ! ! ! ! ! ! ! ! !
  11. 1 data Vect : Nat -> Type -> Type where

    2 Nil : Vect Z a 3 (::) : (x : a) -> (xs : Vect n a) -> Vect (S n) a 4 5 v2 : Vect 2 String 6 v2 = "hello" :: "idris" :: Nil 7 8 v3 : Vect ?len String 9 v3 = "tic" :: "tac" :: "type" :: Nil ! ! ! ! ! ! ! ! ! ! !
  12. 1 data Vect : Nat -> Type -> Type where

    2 Nil : Vect Z a 3 (::) : (x : a) -> (xs : Vect n a) -> Vect (S n) a 4 5 v2 : Vect 2 String 6 v2 = "hello" :: "idris" :: Nil 7 8 v3 : Vect ?len String 9 v3 = "tic" :: "tac" :: "type" :: Nil 10 11 len = proof search ! ! ! ! ! ! ! ! !
  13. ! 1 data Vect : Nat -> Type -> Type

    where 2 Nil : Vect Z a 3 (::) : (x : a) -> (xs : Vect n a) -> Vect (S n) a 4 5 index : Fin n -> Vect n a -> a 6 index fZ (x::xs) = x 7 index (fS k) (x::xs) = index k xs 8 index fZ [] impossible ! ! ! ! ! ! ! ! ! ! ! !
  14. 1 (++) : Vect n a -> Vect m a

    -> Vect (n + m) a 2 (++) Nil m = m 3 (++) (h :: t) m = h :: (t ++ m) ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
  15. 1 (++) : Vect n a -> Vect m a

    -> Vect (n + m) a 2 (++) Nil m = m 3 (++) (h :: t) m = h :: (t ++ m) 4 5 filter : (a -> Bool) -> Vect n a -> (p ** Vect p a) 6 filter p [] = ( _ ** [] ) 7 filter p (x::xs) with (filter' p xs) 8 | (n ** tail) = 9 if p x then 10 ((S n) ** x::tail) 11 else 12 (n ** tail) ! ! ! ! ! ! ! !
  16. (Intuitionistic) Logic Programming FALSE ⊥ TRUE () Disjunction (or) Sum

    Types Conjunction (and) Product Types Implication Function Types
  17. (Predicate) Logic Programming FALSE ⊥ TRUE () Disjunction (or) Sum

    Types Conjunction (and) Product Types Implication Function Types Existential Quantification (exists.) Σ Types Universal Quantification (forall.) ∏ Types
  18. 1 data Player = X | O 2 data Cell

    = Occupied Player | Unoccupied 3 4 instance Show Player where {...} 5 instance Eq Player where {...} 6 instance Show Cell where {...} 7 instance Eq Cell where {…} ! ! ! ! ! ! ! ! ! ! ! ! !
  19. 1 Position : Type 2 Position = Fin 9 3

    4 nw : Position 5 nw = 0 6 {...} 7 se : Position 8 se = 8 9 10 parse : String -> Maybe Position 11 parse "nw" = Just nw 12 parse "n" = Just n 13 parse "ne" = Just ne 14 parse "e" = Just e 15 parse "c" = Just c 16 parse "w" = Just w 17 parse "sw" = Just sw 18 parse "s" = Just s 19 parse "se" = Just se 20 parse _ = Nothing
  20. 1 data Board = 2 B (Vect 9 Cell) 3

    4 instance Eq Board where {...} 5 instance Show Board where {...} 6 7 -- How many positions are occupied ? 8 occupied : Board -> Nat 9 10 -- Who's turn is it? 11 turn : Board -> Player 12 13 -- Is this position free? 14 free : Position -> Board -> Bool 15 16 -- Is there a winner on the board? 17 winner : Board -> Maybe Player 18 19 -- Is this a valid board? 20 isValidBoard : Board -> Bool
  21. ! 1 data so : Bool -> Type where 2

    oh : so True ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
  22. ! 1 data so : Bool -> Type where 2

    oh : so True 3 4 printIf3 : (n: Nat) 5 -> {default oh prf : so (n == 3)} 6 -> IO () 7 printIf3 _ = 8 print "3s are good." ! ! ! ! ! ! ! ! ! ! ! !
  23. *> :x printIf3 3 "3s are good." ! ! !

    ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
  24. *> :x printIf3 3 "3s are good." ! *> :x

    printIf3 3 { prf = oh } "3s are good.” ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
  25. *> :x printIf3 3 "3s are good." ! *> :x

    printIf3 3 { prf = oh } "3s are good.” ! *> :x printIf3 2 (input):1:13:When elaborating argument prf to function Main.printIf3: Can't unify IsJust (Just x) with IsJust (fromInteger 2 == (fromInteger 3)) ! Specifically: Can't unify True with False !
  26. 1 natToFin : Nat -> (n : Nat) -> Maybe

    (Fin n) 2 natToFin Z (S j) = Just fZ 3 natToFin (S k) (S j) with (natToFin k j) 4 | Just k' = Just (fS k') 5 | Nothing = Nothing ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
  27. 1 natToFin : Nat -> (n : Nat) -> Maybe

    (Fin n) 2 natToFin Z (S j) = Just fZ 3 natToFin (S k) (S j) with (natToFin k j) 4 | Just k' = Just (fS k') 5 | Nothing = Nothing 6 7 data IsJust : Maybe a -> Type where 8 ItIsJust : IsJust {a} (Just x) ! ! ! ! ! ! ! ! ! ! ! !
  28. 1 natToFin : Nat -> (n : Nat) -> Maybe

    (Fin n) 2 natToFin Z (S j) = Just fZ 3 natToFin (S k) (S j) with (natToFin k j) 4 | Just k' = Just (fS k') 5 | Nothing = Nothing 6 7 data IsJust : Maybe a -> Type where 8 ItIsJust : IsJust {a} (Just x) 9 10 fromNat : (x: Nat) 11 -> {default ItIsJust 12 prf : (IsJust (natToFin x n))} 13 -> Fin n ! ! ! ! ! ! !
  29. 1 natToFin : Nat -> (n : Nat) -> Maybe

    (Fin n) 2 natToFin Z (S j) = Just fZ 3 natToFin (S k) (S j) with (natToFin k j) 4 | Just k' = Just (fS k') 5 | Nothing = Nothing 6 7 data IsJust : Maybe a -> Type where 8 ItIsJust : IsJust {a} (Just x) 9 10 fromNat : (x: Nat) 11 -> {default ItIsJust 12 prf : (IsJust (natToFin x n))} 13 -> Fin n 14 fromNat {n} x {prf} with (natToFin x n) ! ! ! ! !
  30. 1 natToFin : Nat -> (n : Nat) -> Maybe

    (Fin n) 2 natToFin Z (S j) = Just fZ 3 natToFin (S k) (S j) with (natToFin k j) 4 | Just k' = Just (fS k') 5 | Nothing = Nothing 6 7 data IsJust : Maybe a -> Type where 8 ItIsJust : IsJust {a} (Just x) 9 10 fromNat : (x: Nat) 11 -> {default ItIsJust 12 prf : (IsJust (natToFin x n))} 13 -> Fin n 14 fromNat {n} x {prf} with (natToFin x n) 15 fromNat {n} x {prf = ItIsJust} | Just y = y ! ! ! ! !
  31. ! 1 *> fromNat 7 2 Can't resolve type class

    Enum iType ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
  32. ! 1 *> fromNat 7 2 Can't resolve type class

    Enum iType 3 4 *FinProof> :t the 5 Prelude.Basics.the : (a : Type) -> a -> a ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
  33. ! 1 *> fromNat 7 2 Can't resolve type class

    Enum iType 3 4 *FinProof> :t the 5 Prelude.Basics.the : (a : Type) -> a -> a 6 7 *FinProof> the (Fin 10) (fromNat 7) 8 fS (fS (fS (fS (fS (fS (fS fZ)))))) : Fin 10 ! ! ! ! ! ! ! ! ! ! ! !
  34. ! 1 *> fromNat 7 2 Can't resolve type class

    Enum iType 3 4 *FinProof> :t the 5 Prelude.Basics.the : (a : Type) -> a -> a 6 7 *FinProof> the (Fin 10) (fromNat 7) 8 fS (fS (fS (fS (fS (fS (fS fZ)))))) : Fin 10 9 10 *FinProof> the (Fin 10) (fromNat 10) 11 (input):1:23:When elaborating argument prf 12 Can't unify 13 IsJust (Just x) 14 with 15 IsJust (natToFin 10 10) 16 17 Specifically: 18 Can't unify 19 Just x 20 with 21 Nothing
  35. 1 data ValidMove : Board -> Type where 2 IsValidMove

    : Position -> Player 3 -> (b : Board) -> ValidMove b ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
  36. 1 data ValidMove : Board -> Type where 2 IsValidMove

    : Position -> Player 3 -> (b : Board) -> ValidMove b 4 5 tryValidMove : Position 6 -> Player 7 -> (b : Board) 8 -> Maybe (ValidMove b) ! ! ! ! ! ! ! ! ! ! ! !
  37. 1 data ValidMove : Board -> Type where 2 IsValidMove

    : Position -> Player 3 -> (b : Board) -> ValidMove b 4 5 tryValidMove : Position 6 -> Player 7 -> (b : Board) 8 -> Maybe (ValidMove b) 9 10 validMove : (pos : Position) 11 -> (p : Player) 12 -> (b : Board) 13 -> {default ItIsJust 14 prf : IsJust (tryValidMove pos p b)} 15 -> ValidMove ! ! ! ! !
  38. 1 data ValidMove : Board -> Type where 2 IsValidMove

    : Position -> Player 3 -> (b : Board) -> ValidMove b 4 5 tryValidMove : Position 6 -> Player 7 -> (b : Board) 8 -> Maybe (ValidMove b) 9 10 validMove : (pos : Position) 11 -> (p : Player) 12 -> (b : Board) 13 -> {default ItIsJust 14 prf : IsJust (tryValidMove pos p b)} 15 -> ValidMove 16 validMove pos p b {prf} with (tryValidMove pos p b) ! ! ! !
  39. 1 data ValidMove : Board -> Type where 2 IsValidMove

    : Position -> Player 3 -> (b : Board) -> ValidMove b 4 5 tryValidMove : Position 6 -> Player 7 -> (b : Board) 8 -> Maybe (ValidMove b) 9 10 validMove : (pos : Position) 11 -> (p : Player) 12 -> (b : Board) 13 -> {default ItIsJust 14 prf : IsJust (tryValidMove pos p b)} 15 -> ValidMove 16 validMove pos p b {prf} with (tryValidMove pos p b) 17 validMove pos p b {prf = ItIsJust} | Just y = y ! ! !
  40. 1 data Game : Board -> Type where 2 3

    -- start a new game with an empty board 4 start : Game empty 5 6 -- make a (guaranteed to be valid) move 7 move' : {b : Board} -> (m : ValidMove b) 8 -> Game b -> Game (runMove m) ! ! ! ! ! ! ! ! ! ! ! !
  41. ! 1 -- Make a valid move 2 runMove :

    ValidMove board -> Board 3 runMove (IsValidMove position player (B board)) = 4 B $ replaceAt position (Occupied player) board 5 ! ! ! ! ! ! ! ! ! ! ! ! ! !
  42. ! 1 -- Make a valid move 2 runMove :

    ValidMove board -> Board 3 runMove (IsValidMove position player (B board)) = 4 B $ replaceAt position (Occupied player) board 5 6 -- Make a valid move if you can prove it 7 move : {b : Board} 8 -> (pos : Position) 9 -> (p : Player) 10 -> (g : Game board) 11 -> {default ItIsJust 12 prf : (IsJust (tryValidMove pos p b))} 13 -> Game (runMove $ validMove pos p b {prf}) ! ! ! ! ! ! !
  43. ! 1 -- Make a valid move 2 runMove :

    ValidMove board -> Board 3 runMove (IsValidMove position player (B board)) = 4 B $ replaceAt position (Occupied player) board 5 6 -- Make a valid move if you can prove it 7 move : {b : Board} 8 -> (pos : Position) 9 -> (p : Player) 10 -> (g : Game board) 11 -> {default ItIsJust 12 prf : (IsJust (tryValidMove pos p b))} 13 -> Game (runMove $ validMove pos p b {prf}) 14 move {b} pos p g {prf} = 15 move' (validMove pos p b {prf}) game ! ! ! ! !
  44. 1 data Prev : Game b -> Type where 2

    HasPrev : {bb : Board} 3 -> {m : ValidMove bb} 4 -> {g : Game bb} 5 -> Prev (move' m g) ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
  45. 1 data Prev : Game b -> Type where 2

    HasPrev : {bb : Board} 3 -> {m : ValidMove bb} 4 -> {g : Game bb} 5 -> Prev (move' m g) 6 7 -- What was the previous board? 8 previousBoard : (gg : Game b) 9 -> {default HasPrev prf : (Prev gg)} 10 -> Board ! ! ! ! ! ! ! ! ! !
  46. 1 data Prev : Game b -> Type where 2

    HasPrev : {bb : Board} 3 -> {m : ValidMove bb} 4 -> {g : Game bb} 5 -> Prev (move' m g) 6 7 -- What was the previous board? 8 previousBoard : (gg : Game b) 9 -> {default HasPrev prf : (Prev gg)} 10 -> Board 11 previousBoard (move' {b} m g) {prf = HasPrev} = b ! ! ! ! ! ! ! !
  47. 1 data Prev : Game b -> Type where 2

    HasPrev : {bb : Board} 3 -> {m : ValidMove bb} 4 -> {g : Game bb} 5 -> Prev (move' m g) 6 7 -- What was the previous board? 8 previousBoard : (gg : Game b) 9 -> {default HasPrev prf : (Prev gg)} 10 -> Board 11 previousBoard (move' {b} m g) {prf = HasPrev} = b 12 13 -- Take back the last move? 14 takeBack : (gg : Game b) 15 -> {default HasPrev prf : (Prev gg)} 16 -> Game (previousBoard gg {prf}) ! ! ! !
  48. 1 data Prev : Game b -> Type where 2

    HasPrev : {bb : Board} 3 -> {m : ValidMove bb} 4 -> {g : Game bb} 5 -> Prev (move' m g) 6 7 -- What was the previous board? 8 previousBoard : (gg : Game b) 9 -> {default HasPrev prf : (Prev gg)} 10 -> Board 11 previousBoard (move' {b} m g) {prf = HasPrev} = b 12 13 -- Take back the last move? 14 takeBack : (gg : Game b) 15 -> {default HasPrev prf : (Prev gg)} 16 -> Game (previousBoard gg {prf}) 17 takeBack (move' {b} m g) {prf = HasPrev} = g ! ! !
  49. 1 game0 : ?t1 2 game0 = start 3 t1

    = proof search ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
  50. 1 game0 : ?t1 2 game0 = start 3 t1

    = proof search 4 5 --game0x : ?t2 6 --game0x = takeBack game0 7 --t3 = proof search 8 ! ! ! ! ! ! ! ! ! ! !
  51. 1 game0 : ?t1 2 game0 = start 3 t1

    = proof search 4 5 --game0x : ?t2 6 --game0x = takeBack game0 7 --t3 = proof search 8 9 game1 : ?t3 10 game1 = move ne X game0 11 t3 = proof search ! ! ! ! ! ! ! ! !
  52. 1 game0 : ?t1 2 game0 = start 3 t1

    = proof search 4 5 --game0x : ?t2 6 --game0x = takeBack game0 7 --t3 = proof search 8 9 game1 : ?t3 10 game1 = move ne X game0 11 t3 = proof search 12 13 --game1x : ?t4 14 --game1x = move ne O game1 15 --t4 = proof search ! ! ! ! !
  53. 1 game0 : ?t1 2 game0 = start 3 t1

    = proof search 4 5 --game0x : ?t2 6 --game0x = takeBack game0 7 --t3 = proof search 8 9 game1 : ?t3 10 game1 = move ne X game0 11 t3 = proof search 12 13 --game1x : ?t4 14 --game1x = move ne O game1 15 --t4 = proof search 16 17 game2 : ?t5 18 game2 = move sw O game1 19 t5 = proof search !
  54. 1 data TicTacToeState = 2 InPlay | Done 3 4

    toState : Board -> TicTacToeState 5 toState b = 6 case (winner b, complete b) of 7 (Just p, _) => Done 8 (Nothing, True) => Done 9 (Nothing, False) => InPlay 10 11 data TicTacToe : TicTacToeState -> Type where 12 T : (Game b) -> TicTacToe (toState b) ! ! ! ! ! ! ! !
  55. ! 1 Eff : (m : Type -> Type) 2

    -> (x : Type) 3 -> List EFFECT 4 -> (x -> List EFFECT) 5 -> Type ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
  56. ! 1 Eff : (m : Type -> Type) 2

    -> (x : Type) 3 -> List EFFECT 4 -> (x -> List EFFECT) 5 -> Type 6 7 8 STATE : Type -> EFFECT 9 EXCEPTION : Type -> EFFECT 10 FILEIO : Type -> EFFECT 11 STDIO : EFFECT 12 RND : EFFECT ! ! ! ! ! ! ! !
  57. 1 data TicTacToeRules : Effect where 2 Move : 3

    (position : Position) 4 -> (player : Player) 5 -> { TicTacToe st ==> {st'} (TicTacToe st') } 6 TicTacToeRules TicTacToeState 7 8 Get : { g } TicTacToeRules g 9 10 GetBoard : { TicTacToe st } TicTacToeRules Board 11 ! ! ! ! ! ! ! ! !
  58. 1 data TicTacToeRules : Effect where 2 Move : 3

    (position : Position) 4 -> (player : Player) 5 -> { TicTacToe st ==> {st'} (TicTacToe st') } 6 TicTacToeRules TicTacToeState 7 8 Get : { g } TicTacToeRules g 9 10 GetBoard : { TicTacToe st } TicTacToeRules Board 11 12 TICTACTOE : TicTacToeState -> EFFECT 13 TICTACTOE s = MkEff (TicTacToe s) TicTacToeRules ! ! ! ! ! ! !
  59. 1 using (m : Type -> Type) 2 instance Handler

    TicTacToeRules m where 3 handle (T game) (Move position player) k 4 handle t Get k 5 handle (T game) GetBoard k ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
  60. 1 using (m : Type -> Type) 2 instance Handler

    TicTacToeRules m where 3 handle (T game) (Move position player) k = 4 let b = toBoard game in 5 case tryValidMove position player b of 6 Just m' => 7 let updated = move' m' game in 8 k (toState . toBoard $ updated) (T updated) 9 Nothing => 10 k (toState . toBoard $ game) (T game) 11 12 handle t Get k = 13 k t t 14 15 handle (T game) GetBoard k = 16 k (toBoard game) (T game) ! ! ! !
  61. 1 game : { [TICTACTOE InPlay, STDIO] ==> 2 [TICTACTOE

    Done, STDIO] } Eff IO () 3 game = do ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
  62. 1 game : { [TICTACTOE InPlay, STDIO] ==> 2 [TICTACTOE

    Done, STDIO] } Eff IO () 3 game = do 4 let current = !GetBoard 5 let player = turn current 6 let _ = !(printState current player) 7 let input = !getStr 8 case parse (trim input) of 9 Nothing => ' 10 do putStrLn $ "Invalid move: " ++ input 11 pure !game 12 Just position => 13 do InPlay <- Move position player 14 | Done => putStrLn "Done" 15 game ! ! ! ! !
  63. ! 1 data CurrentGame : Type where 2 Current :

    (TicTacToe state) -> CurrentGame ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
  64. ! 1 data CurrentGame : Type where 2 Current :

    (TicTacToe state) -> CurrentGame 3 4 receive' : { [STDIO, 5 STATE CurrentGame, 6 TCPSERVERCLIENT ClientConnected] ==> 7 [STDIO, 8 STATE CurrentGame, 9 TCPSERVERCLIENT ()] } Eff IO () ! ! ! ! ! ! ! ! ! ! !
  65. ! 1 data CurrentGame : Type where 2 Current :

    (TicTacToe state) -> CurrentGame 3 4 receive' : { [STDIO, 5 STATE CurrentGame, 6 TCPSERVERCLIENT ClientConnected] ==> 7 [STDIO, 8 STATE CurrentGame, 9 TCPSERVERCLIENT ()] } Eff IO () 10 11 game : CurrentGame -> Game x ! ! ! ! ! ! ! ! !
  66. ! 1 data CurrentGame : Type where 2 Current :

    (TicTacToe state) -> CurrentGame 3 4 receive' : { [STDIO, 5 STATE CurrentGame, 6 TCPSERVERCLIENT ClientConnected] ==> 7 [STDIO, 8 STATE CurrentGame, 9 TCPSERVERCLIENT ()] } Eff IO () 10 11 game : CurrentGame -> Game x —?????????? ! ! ! ! ! ! ! ! !
  67. ! 1 data CurrentGame : Type where 2 Current :

    (TicTacToe state) -> CurrentGame 3 4 receive' : { [STDIO, 5 STATE CurrentGame, 6 TCPSERVERCLIENT ClientConnected] ==> 7 [STDIO, 8 STATE CurrentGame, 9 TCPSERVERCLIENT ()] } Eff IO () 10 11 game : CurrentGame -> (x ** Game x) 12 game (Current (T z)) = 13 (toBoard z ** z) ! ! ! ! ! ! !
  68. ! 1 data CurrentGame : Type where 2 Current :

    (TicTacToe state) -> CurrentGame 3 4 receive' : { [STDIO, 5 STATE CurrentGame, 6 TCPSERVERCLIENT ClientConnected] ==> 7 [STDIO, 8 STATE CurrentGame, 9 TCPSERVERCLIENT ()] } Eff IO () 10 11 game : CurrentGame -> (x ** Game x) ! ! ! ! ! ! ! ! !
  69. “the most popular and best established lightweight formal methods are

    type systems” - Benjamin Pierce, Types and Programming Languages