Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
『エンタープライズ』という言葉の重さ 〜Data Vault 2.0をやめた2022年冬〜
Search
ikeda-masashi
December 14, 2022
Technology
2
4.6k
『エンタープライズ』という言葉の重さ 〜Data Vault 2.0をやめた2022年冬〜
https://forkwell.connpass.com/event/263245/
こちらのイベントの登壇内容です。
ikeda-masashi
December 14, 2022
Tweet
Share
More Decks by ikeda-masashi
See All by ikeda-masashi
Redshiftを中心としたAWSでのデータ基盤
mashiike
0
160
運用の役立たないダッシュボードの作り方。
mashiike
3
1k
Amazon Aurora MySQL と Amazon Redshift の Zero-ETL Integration について使い所を考えてみた!
mashiike
0
820
Warningアラートを放置しない!アラート駆動でログやメトリックを自動収集する仕組みによる恩恵
mashiike
6
4k
Prepalert ~Mackerelアラートにログや集計値を貼り付けてくれるトイル削減ツール~
mashiike
0
1.9k
人狼ゲームで考えるデータ基盤 〜データとはいったい・・・〜
mashiike
0
320
Redshift ServerlessとProvisioned Cluster のちょっとした違い
mashiike
0
5.8k
「北欧、暮らしの道具店」のデータ基盤の変遷
mashiike
1
3.4k
小規模ワークロードにおけるRedshift Serverlessのログの取り扱い
mashiike
0
620
Other Decks in Technology
See All in Technology
日経電子版 for Android の技術的課題と取り組み(令和最新版)/android-20250423
nikkei_engineer_recruiting
1
610
Dataverseの検索列について
miyakemito
1
160
ドキュメント管理の理想と現実
kazuhe
3
310
今日からはじめるプラットフォームエンジニアリング
jacopen
8
1.9k
生成AIのユースケースをとにかく集めてまるっと学ぶ!/ all about generative ai usecases
gakumura
3
360
もう難しくない!誰でもカンタンDocker入門 〜30分であなたのPCにアプリを立ち上げる〜
devops_vtj
0
180
LLM アプリケーションのためのクラウドセキュリティ - CSPM の実装ポイント-
osakatechlab
0
120
QA/SDETの現在と、これからの挑戦
imtnd
0
210
AI駆動で進化する開発プロセス ~クラスメソッドでの実践と成功事例~ / aidd-in-classmethod
tomoki10
1
770
勝手に!深堀り!Cloud Run worker pools / Deep dive Cloud Run worker pools
iselegant
4
620
クラウドネイティブ環境の脅威モデリング
kyohmizu
1
250
企業が押さえるべきMCPの未来
takaakikakei
0
250
Featured
See All Featured
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
We Have a Design System, Now What?
morganepeng
52
7.5k
Fireside Chat
paigeccino
37
3.4k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
178
53k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
45
9.5k
Java REST API Framework Comparison - PWX 2021
mraible
31
8.5k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
5
590
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Designing for Performance
lara
608
69k
Designing for humans not robots
tammielis
253
25k
Making Projects Easy
brettharned
116
6.2k
Transcript
『エンタープライズ』という言葉の重さ 〜 Data Vault 2.0をやめた2022年冬〜 2022/12/14 Data Engineering Study #17
18:25〜 池田将士
自己紹介 池田 将士 (@mashiike) 面白法人カヤック その他事業部 SREチーム所属 データエンジニア/サーバーサイドエンジニア 出身: 千葉県
趣味: オンラインゲームと食べ比べ、飲み比べ
会社紹介 鎌倉の地にて、主にWeb技術を用いて 人の印象に深く残るような面白コンテンツを作る会社 ゲームからWebサービス、ミュージアムetc… 様々なことに挑戦 ※幅広く挑戦しすぎて、 中の人も何の会社なのかよくわからないことも・・・
皆様 Data Vault 2.0 って知っていますか?
スケーラブルなエンタープライズ・ データウェアハウスを設計できるモ デリング手法Hub,Link, Satelliteと いう3つの構成要素で3NF系で・・・ (以下略
要は Agileに、 監査性のあって、 スケールしやすい データウェアハウス を構築できる手法!? (暴論)
約1年と4半期前(15ヶ月前) https://speakerdeck.com/mashiike/tonamelfalsedetaji-pan-detamoderingubian
15ヶ月前の状況 (2021/09頃) プロダクト側 • サーバーサイドエンジニア: 約3人 • サービス数(データソース数): 2個 データ基盤側
• データエンジニア: 約0.6人 (1人が他案件と兼務)
DataVault2.0いいぞ!!!
1年前の状況 (2022/01頃) プロダクト側 • サーバーサイドエンジニア: 約3人 => 約4人 • サービス数(データソース数):
2個 => 4個 データ基盤側 • データエンジニア: 約0.6人 (1人が他案件と兼務)
連携先(DB)が増えても 楽に対応できる!!いいね!
半年前の状況 (2022/06頃) プロダクト側 • サーバーサイドエンジニア: 約4人 => 約5人 • サービス数(データソース数):
4個 => 5個+α データ基盤側 • データエンジニア: 約0.6人 (1人が他案件と兼務)
ん?ちょっとまって・・・ プロダクトの開発早くない?
ちょっと前の状況 (2022/09頃) プロダクト側 • サーバーサイドエンジニア: 約6人 • サービス数(データソース数): 5個+α データ基盤側
• データエンジニア: 約0.6人 (1人が他案件と兼務)
お気づきだろうか? プロダクトの開発チームは スケールするが データチームは スケールしていない
そして、、、 データ基盤の保守! 手が回りません!!
どうしてこうなった!?
データチームの人を 採用できなかった・・・
というのもありますが、
スケーラブルなエンタープライズ・ データウェアハウスを設計できるモ デリング手法Hub,Link, Satelliteと いう3つの構成要素で3NF系で・・・ (以下略
スケーラブルなエンタープライズ・ データウェアハウスを設計できるモ デリング手法Hub,Link, Satelliteと いう3つの構成要素で3NF系で・・・ (以下略
https://e-words.jp/w/%E3%82%A8%E3%83%B3%E3%82%BF%E3%83%BC%E3%83%97%E3%83%A9% E3%82%A4%E3%82%BA.html
ウチは中小企業だ!!(エッ 従業員数:約300人くらい
どこがエンタープライズ向け?
どこがエンタープライズ向け? 3NFにしてモデルを疎結合な状態に するのが高コスト
どこがエンタープライズ向け? 3NFにしてモデルを疎結合な状態に するのが高コスト Sattelliteの履歴を保守管理するのが 高コスト
どこがエンタープライズ向け? 時間が立つにつれて Vault領域の保守難度が 爆発的に高くなる。 物量も多くなるので 1つのソースシステムに 少なくとも0.5人くらいはほしい。
で、どうする?
データ基盤の開発効率 ≒生産性を上げたい
ソフトウェアエンジニアリングの世界には ViewとModelを密結合させることで、 生産性を上げたフレームワークがある そう、Rails ※ただし、柔軟性に難が出てくる
そうだ! 柔軟性に関しては妥協 データマートと Stagingを密結合させよう!
None
None
None
DataVault 2.0 やめました。 2022年冬
で、これって・・・
https://zenn.dev/tenajima/articles/64caed131ba961 dbt style guide 通りじゃん!
まとめ 中小企業(データエンジニア1人未満)で Data Vault 2.0を導入した結果…
まとめ 中小企業(データエンジニア1人未満)で Data Vault 2.0を導入した結果… 手が回らなくなったので、やめた 気がついたらdbt style guide通りになっていた。
まとめ 中小企業(データエンジニア1人未満)で Data Vault 2.0を導入した結果… 手が回らなくなったので、やめた 気がついたらdbt style guide通りになっていた。 『エンタープライズ』と名がついているものは
データチームがスケールするなら良い選択肢 スケールしないなら、覚悟しよう。
広報活動 \カヤックに興味を持ってくださった方へ/ カヤック社員がどんな風に働いているか? どんな制作実績があるか? などの情報を定期的に配信しています! ニュースレターへ登録しませんか? https://hubspot.kayac.com/we_are_kayac
ありがとうございました。