Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Story Points Suck!
Search
Mauro Da Silva
November 16, 2024
Programming
0
23
Story Points Suck!
Mauro Da Silva
November 16, 2024
Tweet
Share
More Decks by Mauro Da Silva
See All by Mauro Da Silva
What Submarines & Chickens Can Teach You About Teams
maurodasilva
0
74
Other Decks in Programming
See All in Programming
知られざるDMMデータエンジニアの生態 〜かつてツチノコと呼ばれし者〜
takaha4k
1
450
BEエンジニアがFEの業務をできるようになるまでにやったこと
yoshida_ryushin
0
200
watsonx.ai Dojo #6 継続的なAIアプリ開発と展開
oniak3ibm
PRO
0
170
アクターシステムに頼らずEvent Sourcingする方法について
j5ik2o
6
700
「とりあえず動く」コードはよい、「読みやすい」コードはもっとよい / Code that 'just works' is good, but code that is 'readable' is even better.
mkmk884
6
1.4k
Amazon Nova Reelの可能性
hideg
0
200
技術的負債と向き合うカイゼン活動を1年続けて分かった "持続可能" なプロダクト開発
yuichiro_serita
0
300
快速入門可觀測性
blueswen
0
500
Simple組み合わせ村から大都会Railsにやってきた俺は / Coming to Rails from the Simple
moznion
3
2.1k
見えないメモリを観測する: PHP 8.4 `pg_result_memory_size()` とSQL結果のメモリ管理
kentaroutakeda
0
940
functionalなアプローチで動的要素を排除する
ryopeko
1
210
chibiccをCILに移植した結果 (NGK2025S版)
kekyo
PRO
0
130
Featured
See All Featured
GitHub's CSS Performance
jonrohan
1030
460k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
132
33k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
49
2.2k
GraphQLとの向き合い方2022年版
quramy
44
13k
Practical Orchestrator
shlominoach
186
10k
Statistics for Hackers
jakevdp
797
220k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
26
1.9k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
160
15k
Building Adaptive Systems
keathley
38
2.4k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
30
2.1k
Building an army of robots
kneath
302
45k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
3
360
Transcript
Exploring a unique approach to estimation Managing Consultant Telstra Purple
THE HISTORY
…using them [story points] to predict “when we’ll be done”
is at best a weak idea
PROBLEMS WITH STORY POINTS
7:20AM Story Point
How long does it take to get to work? EXPERIMENT
1st March 2nd March 7:00AM 8:10AM 7:00AM 7:30AM 3rd March 7:00AM 7:20AM
Plans based on average are wrong on average
None
PRINCIPLES OF FORECASTING Reforecast with new information Think probabilistically, not
deterministically
None
Scatterplot Cycle Time (Days)
DON’T ESTIMATE STORIES
WORK IN PROGRESS
Monte Carlo Simulation
EXPERIMENT
EXPERIMENT
1 4 10,000x BASIC
When will all the work be 1 1st Feb 2nd
Feb 3rd Feb 4th Feb 0 2 1
When will be
How stories can be
START FORECASTING in just Four weeks
LITTLE’S LAW AVERAGE CYCLE TIME = AVERAGE WIP / AVERAGE
THROUGPUT
Use the assumptions of to verify stability
CFD
Average Arrival Rate Average Departure Rate matches
Finish all work that is started
Work in Progress should be constant
Work in Progress should be constant Average Age of
USE consistent UNITS
Think probabilistically
None
scatterplot
stories with
Completion Predict with Monte Carlo Simulation
Ensure stability with assumptions of
IMPACTS Tomorrows PREDICTABILITY Today’s actions
Thank you
None