Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyConDE 2016 - Building Data Pipelines with P...
Search
Miguel Cabrera
October 31, 2016
Technology
0
270
PyConDE 2016 - Building Data Pipelines with Python
Miguel Cabrera
October 31, 2016
Tweet
Share
More Decks by Miguel Cabrera
See All by Miguel Cabrera
Machine Learning for Time Series Forecasting
mfcabrera
0
240
Data Science in Fashion - Exploring Demand Forecasting
mfcabrera
0
110
Helping Travellers Make Better Hotel Choices 500 Million Times a Month
mfcabrera
1
140
Europython 2016 - Things I wish I knew before using Python for Data Processing
mfcabrera
1
1.1k
PyData Berlin Meetup Nov 2015 - (Some of the) things I wish I knew before starting using Python for Data Science
mfcabrera
0
170
Python and Life Hacking with Emacs
mfcabrera
2
300
PyData Berlin 2015 - Processing Hotel Reviews with Python
mfcabrera
4
1.8k
Munich Datageeks - Introduction to SVM using Python
mfcabrera
2
220
Dictionary Learning for Music Genre Recognition
mfcabrera
0
240
Other Decks in Technology
See All in Technology
SDNという名のデータプレーンプログラミングの歴史
ebiken
PRO
2
130
Taming you application's environments
salaboy
0
200
AGIについてChatGPTに聞いてみた
blueb
0
130
誰も全体を知らない ~ ロールの垣根を超えて引き上げる開発生産性 / Boosting Development Productivity Across Roles
kakehashi
2
230
10XにおけるData Contractの導入について: Data Contract事例共有会
10xinc
7
690
LINEヤフーにおけるPrerender技術の導入とその効果
narirou
1
160
ExaDB-D dbaascli で出来ること
oracle4engineer
PRO
0
3.9k
複雑なState管理からの脱却
sansantech
PRO
1
160
OCI Security サービス 概要
oracle4engineer
PRO
0
6.5k
OCI 運用監視サービス 概要
oracle4engineer
PRO
0
4.8k
ドメインの本質を掴む / Get the essence of the domain
sinsoku
2
160
"とにかくやってみる"で始めるAWS Security Hub
maimyyym
2
100
Featured
See All Featured
Understanding Cognitive Biases in Performance Measurement
bluesmoon
26
1.4k
No one is an island. Learnings from fostering a developers community.
thoeni
19
3k
Testing 201, or: Great Expectations
jmmastey
38
7.1k
Why Our Code Smells
bkeepers
PRO
334
57k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
4 Signs Your Business is Dying
shpigford
180
21k
The Cult of Friendly URLs
andyhume
78
6k
Ruby is Unlike a Banana
tanoku
97
11k
VelocityConf: Rendering Performance Case Studies
addyosmani
325
24k
Building Your Own Lightsaber
phodgson
103
6.1k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
28
2k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Transcript
Building Data Pipelines with Python Data Engineer @ TY
@mfcabrera
[email protected]
Miguel Cabrera PyCon Deutschland 30.10.2016
Agenda
Agenda Context Data Pipelines with Luigi Tips and
Tricks Examples
Data Processing Pipelines
cat file.txt | wc -‐ l | mail -‐s
“hello”
[email protected]
ETL
ETL • Extract data from a data source •
Transform the data • Load into a sink
None
Feature Extraction Parameter Estimation Model Training Feature Extraction
Model Predict Visualize/ Format
Steps in different technologies
Steps can be run in parallel
Steps have complex dependencies among them
Workflows • Repeat • Parametrize •
Resume • Schedule it
None
None
“A Python framework for data flow definition and execution” Luigi
Concepts
Concepts Tasks Parameters Targets Scheduler & Workers
Tasks
None
1
2
3
4
WordCountTask file.txt wc.txt
WordCountTask file.txt wc.txt ToJsonTask wc.json
None
Parameters
None
Parameters Used to idenNfy the task From arguments
or from configuraNon Many types of Parameters (int, date, boolean, date range, Nme delta, dict, enum)
Targets
Targets Resources produced by a Task Typically Local files
or files distributed file system (HDFS) Must implement the method exists() Many targets available
None
Scheduler & Workers
None
Source: h@p:/ /www.arashrouhani.com/luigid-‐basics-‐jun-‐2015
BaVeries Included
Batteries Included Package contrib filled with goodies Good support
for Hadoop Different Targets Extensible
Task Types Task -‐ Local Hadoop MR, Pig, Spark,
etc SalesForce, ElasNcsearch, etc. ExternalProgram check luigi.contrib !
Target LocalTarget HDFS, S3, FTP, SSH, WebHDFS, etc.
ESTarget, MySQLTarget, MSQL, Hive, SQLAlchemy, etc.
None
Tips & Tricks
Separate pipeline and logic
Extend to avoid boilerplate code
DRY
Conclusion Luigi is a mature, baVeries-‐included alternaNve for building
data pipelines Lacks of powerful visualizaNon of the pipelines Requires a external way of launching jobs (i.e. cron). Hard to debug MR Jobs
Lear More hVps:/ /github.com/spoNfy/luigi hVp:/ /luigi.readthedocs.io/en/stable/
Thanks!
Credits • pipe icon by Oliviu Stoian from the Noun
Project • Photo Credit: (CC) h@ps:/ /www.flickr.com/photos/ 47244853@N03/29988510886 from hb.s via Compfight • Concrete Mixer: (CC) h@ps:/ /www.flickr.com/photos/ 145708285@N03/30138453986 by MasLabor via Compfight