Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyConDE 2016 - Building Data Pipelines with P...
Search
Miguel Cabrera
October 31, 2016
Technology
0
310
PyConDE 2016 - Building Data Pipelines with Python
Miguel Cabrera
October 31, 2016
Tweet
Share
More Decks by Miguel Cabrera
See All by Miguel Cabrera
Machine Learning for Time Series Forecasting
mfcabrera
0
270
Data Science in Fashion - Exploring Demand Forecasting
mfcabrera
0
120
Helping Travellers Make Better Hotel Choices 500 Million Times a Month
mfcabrera
1
160
Europython 2016 - Things I wish I knew before using Python for Data Processing
mfcabrera
1
1.2k
PyData Berlin Meetup Nov 2015 - (Some of the) things I wish I knew before starting using Python for Data Science
mfcabrera
0
190
Python and Life Hacking with Emacs
mfcabrera
2
330
PyData Berlin 2015 - Processing Hotel Reviews with Python
mfcabrera
4
1.9k
Munich Datageeks - Introduction to SVM using Python
mfcabrera
2
260
Dictionary Learning for Music Genre Recognition
mfcabrera
0
250
Other Decks in Technology
See All in Technology
Slackひと声でブログ校正!Claudeレビュー自動化編
yusukeshimizu
3
180
コードの考古学 〜労務システムから発掘した成長の糧〜
kenta_smarthr
1
1.2k
障害を回避するHttpClient再入門 / Avoiding Failures HttpClient Reintroduction
uskey512
1
140
Babylon.jsでゲームを作ってみよう
limes2018
0
100
Java で学ぶ 代数的データ型
ysknsid25
1
510
テストを実施する前に考えるべきテストの話 / Thinking About Testing Before You Test
nihonbuson
PRO
14
2.1k
Houtou.pm #1
papix
0
670
AIコードエディタは開発を変えるか?Cursorをチームに導入して1ヶ月経った本音
ota1022
1
700
Scale Security Programs with Scorecarding
ramimac
0
440
FastMCPでSQLをチェックしてくれるMCPサーバーを自作してCursorから動かしてみた
nayuts
1
220
会社紹介資料 / Sansan Company Profile
sansan33
PRO
6
360k
NW運用の工夫と発明
recuraki
1
790
Featured
See All Featured
Writing Fast Ruby
sferik
628
61k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.3k
RailsConf 2023
tenderlove
30
1.1k
Building Applications with DynamoDB
mza
95
6.4k
Docker and Python
trallard
44
3.4k
Faster Mobile Websites
deanohume
307
31k
Being A Developer After 40
akosma
91
590k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
5.8k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
5
620
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
47
2.8k
Visualization
eitanlees
146
16k
How to Think Like a Performance Engineer
csswizardry
23
1.6k
Transcript
Building Data Pipelines with Python Data Engineer @ TY
@mfcabrera
[email protected]
Miguel Cabrera PyCon Deutschland 30.10.2016
Agenda
Agenda Context Data Pipelines with Luigi Tips and
Tricks Examples
Data Processing Pipelines
cat file.txt | wc -‐ l | mail -‐s
“hello”
[email protected]
ETL
ETL • Extract data from a data source •
Transform the data • Load into a sink
None
Feature Extraction Parameter Estimation Model Training Feature Extraction
Model Predict Visualize/ Format
Steps in different technologies
Steps can be run in parallel
Steps have complex dependencies among them
Workflows • Repeat • Parametrize •
Resume • Schedule it
None
None
“A Python framework for data flow definition and execution” Luigi
Concepts
Concepts Tasks Parameters Targets Scheduler & Workers
Tasks
None
1
2
3
4
WordCountTask file.txt wc.txt
WordCountTask file.txt wc.txt ToJsonTask wc.json
None
Parameters
None
Parameters Used to idenNfy the task From arguments
or from configuraNon Many types of Parameters (int, date, boolean, date range, Nme delta, dict, enum)
Targets
Targets Resources produced by a Task Typically Local files
or files distributed file system (HDFS) Must implement the method exists() Many targets available
None
Scheduler & Workers
None
Source: h@p:/ /www.arashrouhani.com/luigid-‐basics-‐jun-‐2015
BaVeries Included
Batteries Included Package contrib filled with goodies Good support
for Hadoop Different Targets Extensible
Task Types Task -‐ Local Hadoop MR, Pig, Spark,
etc SalesForce, ElasNcsearch, etc. ExternalProgram check luigi.contrib !
Target LocalTarget HDFS, S3, FTP, SSH, WebHDFS, etc.
ESTarget, MySQLTarget, MSQL, Hive, SQLAlchemy, etc.
None
Tips & Tricks
Separate pipeline and logic
Extend to avoid boilerplate code
DRY
Conclusion Luigi is a mature, baVeries-‐included alternaNve for building
data pipelines Lacks of powerful visualizaNon of the pipelines Requires a external way of launching jobs (i.e. cron). Hard to debug MR Jobs
Lear More hVps:/ /github.com/spoNfy/luigi hVp:/ /luigi.readthedocs.io/en/stable/
Thanks!
Credits • pipe icon by Oliviu Stoian from the Noun
Project • Photo Credit: (CC) h@ps:/ /www.flickr.com/photos/ 47244853@N03/29988510886 from hb.s via Compfight • Concrete Mixer: (CC) h@ps:/ /www.flickr.com/photos/ 145708285@N03/30138453986 by MasLabor via Compfight