Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyConDE 2016 - Building Data Pipelines with P...
Search
Miguel Cabrera
October 31, 2016
Technology
0
300
PyConDE 2016 - Building Data Pipelines with Python
Miguel Cabrera
October 31, 2016
Tweet
Share
More Decks by Miguel Cabrera
See All by Miguel Cabrera
Machine Learning for Time Series Forecasting
mfcabrera
0
260
Data Science in Fashion - Exploring Demand Forecasting
mfcabrera
0
120
Helping Travellers Make Better Hotel Choices 500 Million Times a Month
mfcabrera
1
160
Europython 2016 - Things I wish I knew before using Python for Data Processing
mfcabrera
1
1.2k
PyData Berlin Meetup Nov 2015 - (Some of the) things I wish I knew before starting using Python for Data Science
mfcabrera
0
190
Python and Life Hacking with Emacs
mfcabrera
2
320
PyData Berlin 2015 - Processing Hotel Reviews with Python
mfcabrera
4
1.9k
Munich Datageeks - Introduction to SVM using Python
mfcabrera
2
260
Dictionary Learning for Music Genre Recognition
mfcabrera
0
250
Other Decks in Technology
See All in Technology
Microsoft の SSE の現在地
skmkzyk
0
300
MCPが変えるAIとの協働
knishioka
1
140
Новые мапы в Go. Вова Марунин, Clatch, МТС
lamodatech
0
2k
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
730
MCPを理解する
yudai00
14
9.9k
Winning at PHP in Production in 2025
beberlei
1
280
試作とデモンストレーション / Prototyping and Demonstrations
ks91
PRO
0
100
AI駆動で進化する開発プロセス ~クラスメソッドでの実践と成功事例~ / aidd-in-classmethod
tomoki10
1
990
正式リリースされた Semantic Kernel の Agent Framework 全部紹介!
okazuki
1
990
Azure × MCP 入門
ry0y4n
8
1.5k
エンジニアリングで組織のアウトカムを最速で最大化する!
ham0215
1
300
OPENLOGI Company Profile for engineer
hr01
1
26k
Featured
See All Featured
Writing Fast Ruby
sferik
628
61k
Typedesign – Prime Four
hannesfritz
41
2.6k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
19
1.2k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
2.9k
Practical Orchestrator
shlominoach
187
11k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2k
Raft: Consensus for Rubyists
vanstee
137
6.9k
The Cult of Friendly URLs
andyhume
78
6.3k
Java REST API Framework Comparison - PWX 2021
mraible
31
8.6k
The Invisible Side of Design
smashingmag
299
50k
Gamification - CAS2011
davidbonilla
81
5.3k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Transcript
Building Data Pipelines with Python Data Engineer @ TY
@mfcabrera
[email protected]
Miguel Cabrera PyCon Deutschland 30.10.2016
Agenda
Agenda Context Data Pipelines with Luigi Tips and
Tricks Examples
Data Processing Pipelines
cat file.txt | wc -‐ l | mail -‐s
“hello”
[email protected]
ETL
ETL • Extract data from a data source •
Transform the data • Load into a sink
None
Feature Extraction Parameter Estimation Model Training Feature Extraction
Model Predict Visualize/ Format
Steps in different technologies
Steps can be run in parallel
Steps have complex dependencies among them
Workflows • Repeat • Parametrize •
Resume • Schedule it
None
None
“A Python framework for data flow definition and execution” Luigi
Concepts
Concepts Tasks Parameters Targets Scheduler & Workers
Tasks
None
1
2
3
4
WordCountTask file.txt wc.txt
WordCountTask file.txt wc.txt ToJsonTask wc.json
None
Parameters
None
Parameters Used to idenNfy the task From arguments
or from configuraNon Many types of Parameters (int, date, boolean, date range, Nme delta, dict, enum)
Targets
Targets Resources produced by a Task Typically Local files
or files distributed file system (HDFS) Must implement the method exists() Many targets available
None
Scheduler & Workers
None
Source: h@p:/ /www.arashrouhani.com/luigid-‐basics-‐jun-‐2015
BaVeries Included
Batteries Included Package contrib filled with goodies Good support
for Hadoop Different Targets Extensible
Task Types Task -‐ Local Hadoop MR, Pig, Spark,
etc SalesForce, ElasNcsearch, etc. ExternalProgram check luigi.contrib !
Target LocalTarget HDFS, S3, FTP, SSH, WebHDFS, etc.
ESTarget, MySQLTarget, MSQL, Hive, SQLAlchemy, etc.
None
Tips & Tricks
Separate pipeline and logic
Extend to avoid boilerplate code
DRY
Conclusion Luigi is a mature, baVeries-‐included alternaNve for building
data pipelines Lacks of powerful visualizaNon of the pipelines Requires a external way of launching jobs (i.e. cron). Hard to debug MR Jobs
Lear More hVps:/ /github.com/spoNfy/luigi hVp:/ /luigi.readthedocs.io/en/stable/
Thanks!
Credits • pipe icon by Oliviu Stoian from the Noun
Project • Photo Credit: (CC) h@ps:/ /www.flickr.com/photos/ 47244853@N03/29988510886 from hb.s via Compfight • Concrete Mixer: (CC) h@ps:/ /www.flickr.com/photos/ 145708285@N03/30138453986 by MasLabor via Compfight