Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyConDE 2016 - Building Data Pipelines with P...
Search
Miguel Cabrera
October 31, 2016
Technology
0
330
PyConDE 2016 - Building Data Pipelines with Python
Miguel Cabrera
October 31, 2016
Tweet
Share
More Decks by Miguel Cabrera
See All by Miguel Cabrera
Machine Learning for Time Series Forecasting
mfcabrera
0
320
Data Science in Fashion - Exploring Demand Forecasting
mfcabrera
0
140
Helping Travellers Make Better Hotel Choices 500 Million Times a Month
mfcabrera
1
180
Europython 2016 - Things I wish I knew before using Python for Data Processing
mfcabrera
1
1.3k
PyData Berlin Meetup Nov 2015 - (Some of the) things I wish I knew before starting using Python for Data Science
mfcabrera
0
210
Python and Life Hacking with Emacs
mfcabrera
2
360
PyData Berlin 2015 - Processing Hotel Reviews with Python
mfcabrera
4
2k
Munich Datageeks - Introduction to SVM using Python
mfcabrera
2
310
Dictionary Learning for Music Genre Recognition
mfcabrera
0
260
Other Decks in Technology
See All in Technology
仕様書駆動AI開発の実践: Issue→Skill→PRテンプレで 再現性を作る
knishioka
2
630
こんなところでも(地味に)活躍するImage Modeさんを知ってるかい?- Image Mode for OpenShift -
tsukaman
0
120
What happened to RubyGems and what can we learn?
mikemcquaid
0
280
GitLab Duo Agent Platform × AGENTS.md で実現するSpec-Driven Development / GitLab Duo Agent Platform × AGENTS.md
n11sh1
0
130
~Everything as Codeを諦めない~ 後からCDK
mu7889yoon
3
320
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
140
クレジットカード決済基盤を支えるSRE - 厳格な監査とSRE運用の両立 (SRE Kaigi 2026)
capytan
6
2.7k
Ruby版 JSXのRuxが気になる
sansantech
PRO
0
150
コスト削減から「セキュリティと利便性」を担うプラットフォームへ
sansantech
PRO
3
1.4k
SREじゃなかった僕らがenablingを通じて「SRE実践者」になるまでのリアル / SRE Kaigi 2026
aeonpeople
6
2.2k
CDK対応したAWS DevOps Agentを試そう_20260201
masakiokuda
1
240
2026年、サーバーレスの現在地 -「制約と戦う技術」から「当たり前の実行基盤」へ- /serverless2026
slsops
2
220
Featured
See All Featured
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
210
The Spectacular Lies of Maps
axbom
PRO
1
520
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
210
From Legacy to Launchpad: Building Startup-Ready Communities
dugsong
0
140
The agentic SEO stack - context over prompts
schlessera
0
630
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.4k
Digital Projects Gone Horribly Wrong (And the UX Pros Who Still Save the Day) - Dean Schuster
uxyall
0
330
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
200
The Pragmatic Product Professional
lauravandoore
37
7.1k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.3k
Exploring the relationship between traditional SERPs and Gen AI search
raygrieselhuber
PRO
2
3.6k
Stewardship and Sustainability of Urban and Community Forests
pwiseman
0
110
Transcript
Building Data Pipelines with Python Data Engineer @ TY
@mfcabrera
[email protected]
Miguel Cabrera PyCon Deutschland 30.10.2016
Agenda
Agenda Context Data Pipelines with Luigi Tips and
Tricks Examples
Data Processing Pipelines
cat file.txt | wc -‐ l | mail -‐s
“hello”
[email protected]
ETL
ETL • Extract data from a data source •
Transform the data • Load into a sink
None
Feature Extraction Parameter Estimation Model Training Feature Extraction
Model Predict Visualize/ Format
Steps in different technologies
Steps can be run in parallel
Steps have complex dependencies among them
Workflows • Repeat • Parametrize •
Resume • Schedule it
None
None
“A Python framework for data flow definition and execution” Luigi
Concepts
Concepts Tasks Parameters Targets Scheduler & Workers
Tasks
None
1
2
3
4
WordCountTask file.txt wc.txt
WordCountTask file.txt wc.txt ToJsonTask wc.json
None
Parameters
None
Parameters Used to idenNfy the task From arguments
or from configuraNon Many types of Parameters (int, date, boolean, date range, Nme delta, dict, enum)
Targets
Targets Resources produced by a Task Typically Local files
or files distributed file system (HDFS) Must implement the method exists() Many targets available
None
Scheduler & Workers
None
Source: h@p:/ /www.arashrouhani.com/luigid-‐basics-‐jun-‐2015
BaVeries Included
Batteries Included Package contrib filled with goodies Good support
for Hadoop Different Targets Extensible
Task Types Task -‐ Local Hadoop MR, Pig, Spark,
etc SalesForce, ElasNcsearch, etc. ExternalProgram check luigi.contrib !
Target LocalTarget HDFS, S3, FTP, SSH, WebHDFS, etc.
ESTarget, MySQLTarget, MSQL, Hive, SQLAlchemy, etc.
None
Tips & Tricks
Separate pipeline and logic
Extend to avoid boilerplate code
DRY
Conclusion Luigi is a mature, baVeries-‐included alternaNve for building
data pipelines Lacks of powerful visualizaNon of the pipelines Requires a external way of launching jobs (i.e. cron). Hard to debug MR Jobs
Lear More hVps:/ /github.com/spoNfy/luigi hVp:/ /luigi.readthedocs.io/en/stable/
Thanks!
Credits • pipe icon by Oliviu Stoian from the Noun
Project • Photo Credit: (CC) h@ps:/ /www.flickr.com/photos/ 47244853@N03/29988510886 from hb.s via Compfight • Concrete Mixer: (CC) h@ps:/ /www.flickr.com/photos/ 145708285@N03/30138453986 by MasLabor via Compfight