Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyConDE 2016 - Building Data Pipelines with P...
Search
Miguel Cabrera
October 31, 2016
Technology
0
300
PyConDE 2016 - Building Data Pipelines with Python
Miguel Cabrera
October 31, 2016
Tweet
Share
More Decks by Miguel Cabrera
See All by Miguel Cabrera
Machine Learning for Time Series Forecasting
mfcabrera
0
260
Data Science in Fashion - Exploring Demand Forecasting
mfcabrera
0
120
Helping Travellers Make Better Hotel Choices 500 Million Times a Month
mfcabrera
1
150
Europython 2016 - Things I wish I knew before using Python for Data Processing
mfcabrera
1
1.2k
PyData Berlin Meetup Nov 2015 - (Some of the) things I wish I knew before starting using Python for Data Science
mfcabrera
0
190
Python and Life Hacking with Emacs
mfcabrera
2
320
PyData Berlin 2015 - Processing Hotel Reviews with Python
mfcabrera
4
1.9k
Munich Datageeks - Introduction to SVM using Python
mfcabrera
2
260
Dictionary Learning for Music Genre Recognition
mfcabrera
0
250
Other Decks in Technology
See All in Technology
自分の軸足を見つけろ
tsuemura
2
600
LangChainとLangGiraphによるRAG・AIエージェント実践入門「10章 要件定義書生成Alエージェントの開発」輪読会スライド
takaakiinada
0
130
IVRyにおけるNLP活用と NLP2025の関連論文紹介
keisukeosone
0
180
Android는 어떻게 화면을 그릴까?
davidkwon7
0
100
Automatically generating types by running tests
sinsoku
1
460
AIで進化するソフトウェアテスト:mablの最新生成AI機能でQAを加速!
mfunaki
0
120
MCPを活用した検索システムの作り方/How to implement search systems with MCP #catalks
quiver
6
1.4k
Стильный код: натуральный поиск редких атрибутов по картинке. Юлия Антохина, Data Scientist, Lamoda Tech
lamodatech
0
430
MCP Documentation Server @AI Coding Meetup #1
yyoshiki41
2
2.6k
Zabbixチョットデキルとは!?
kujiraitakahiro
0
180
AIエージェント開発における「攻めの品質改善」と「守りの品質保証」 / 2024.04.09 GPU UNITE 新年会 2025
smiyawaki0820
0
400
やさしいMCP入門
minorun365
PRO
149
96k
Featured
See All Featured
Thoughts on Productivity
jonyablonski
69
4.6k
Side Projects
sachag
452
42k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
120k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Measuring & Analyzing Core Web Vitals
bluesmoon
7
390
Become a Pro
speakerdeck
PRO
27
5.3k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.8k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
9
740
Designing for Performance
lara
607
69k
A designer walks into a library…
pauljervisheath
205
24k
Transcript
Building Data Pipelines with Python Data Engineer @ TY
@mfcabrera
[email protected]
Miguel Cabrera PyCon Deutschland 30.10.2016
Agenda
Agenda Context Data Pipelines with Luigi Tips and
Tricks Examples
Data Processing Pipelines
cat file.txt | wc -‐ l | mail -‐s
“hello”
[email protected]
ETL
ETL • Extract data from a data source •
Transform the data • Load into a sink
None
Feature Extraction Parameter Estimation Model Training Feature Extraction
Model Predict Visualize/ Format
Steps in different technologies
Steps can be run in parallel
Steps have complex dependencies among them
Workflows • Repeat • Parametrize •
Resume • Schedule it
None
None
“A Python framework for data flow definition and execution” Luigi
Concepts
Concepts Tasks Parameters Targets Scheduler & Workers
Tasks
None
1
2
3
4
WordCountTask file.txt wc.txt
WordCountTask file.txt wc.txt ToJsonTask wc.json
None
Parameters
None
Parameters Used to idenNfy the task From arguments
or from configuraNon Many types of Parameters (int, date, boolean, date range, Nme delta, dict, enum)
Targets
Targets Resources produced by a Task Typically Local files
or files distributed file system (HDFS) Must implement the method exists() Many targets available
None
Scheduler & Workers
None
Source: h@p:/ /www.arashrouhani.com/luigid-‐basics-‐jun-‐2015
BaVeries Included
Batteries Included Package contrib filled with goodies Good support
for Hadoop Different Targets Extensible
Task Types Task -‐ Local Hadoop MR, Pig, Spark,
etc SalesForce, ElasNcsearch, etc. ExternalProgram check luigi.contrib !
Target LocalTarget HDFS, S3, FTP, SSH, WebHDFS, etc.
ESTarget, MySQLTarget, MSQL, Hive, SQLAlchemy, etc.
None
Tips & Tricks
Separate pipeline and logic
Extend to avoid boilerplate code
DRY
Conclusion Luigi is a mature, baVeries-‐included alternaNve for building
data pipelines Lacks of powerful visualizaNon of the pipelines Requires a external way of launching jobs (i.e. cron). Hard to debug MR Jobs
Lear More hVps:/ /github.com/spoNfy/luigi hVp:/ /luigi.readthedocs.io/en/stable/
Thanks!
Credits • pipe icon by Oliviu Stoian from the Noun
Project • Photo Credit: (CC) h@ps:/ /www.flickr.com/photos/ 47244853@N03/29988510886 from hb.s via Compfight • Concrete Mixer: (CC) h@ps:/ /www.flickr.com/photos/ 145708285@N03/30138453986 by MasLabor via Compfight