$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyConDE 2016 - Building Data Pipelines with P...
Search
Miguel Cabrera
October 31, 2016
Technology
0
330
PyConDE 2016 - Building Data Pipelines with Python
Miguel Cabrera
October 31, 2016
Tweet
Share
More Decks by Miguel Cabrera
See All by Miguel Cabrera
Machine Learning for Time Series Forecasting
mfcabrera
0
300
Data Science in Fashion - Exploring Demand Forecasting
mfcabrera
0
130
Helping Travellers Make Better Hotel Choices 500 Million Times a Month
mfcabrera
1
170
Europython 2016 - Things I wish I knew before using Python for Data Processing
mfcabrera
1
1.3k
PyData Berlin Meetup Nov 2015 - (Some of the) things I wish I knew before starting using Python for Data Science
mfcabrera
0
200
Python and Life Hacking with Emacs
mfcabrera
2
350
PyData Berlin 2015 - Processing Hotel Reviews with Python
mfcabrera
4
1.9k
Munich Datageeks - Introduction to SVM using Python
mfcabrera
2
300
Dictionary Learning for Music Genre Recognition
mfcabrera
0
260
Other Decks in Technology
See All in Technology
ML PM Talk #1 - ML PMの分類に関する考察
lycorptech_jp
PRO
1
760
Haskell を武器にして挑む競技プログラミング ─ 操作的思考から意味モデル思考へ
naoya
6
1.3k
re:Invent 2025 ~何をする者であり、どこへいくのか~
tetutetu214
0
190
「Managed Instances」と「durable functions」で広がるAWS Lambdaのユースケース
lamaglama39
0
290
re:Inventで気になったサービスを10分でいけるところまでお話しします
yama3133
1
120
Kiro Autonomous AgentとKiro Powers の紹介 / kiro-autonomous-agent-and-powers
tomoki10
0
350
AWSを使う上で最低限知っておきたいセキュリティ研修を社内で実施した話 ~みんなでやるセキュリティ~
maimyyym
2
230
生成AI時代におけるグローバル戦略思考
taka_aki
0
110
コミューンのデータ分析AIエージェント「Community Sage」の紹介
fufufukakaka
0
460
Overture Maps Foundationの3年を振り返る
moritoru
0
160
AI時代の開発フローとともに気を付けたいこと
kkamegawa
0
2.6k
MapKitとオープンデータで実現する地図情報の拡張と可視化
zozotech
PRO
1
130
Featured
See All Featured
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.1k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
970
The World Runs on Bad Software
bkeepers
PRO
72
12k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
94
How to Ace a Technical Interview
jacobian
280
24k
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
The Invisible Side of Design
smashingmag
302
51k
Designing Experiences People Love
moore
143
24k
Done Done
chrislema
186
16k
Transcript
Building Data Pipelines with Python Data Engineer @ TY
@mfcabrera
[email protected]
Miguel Cabrera PyCon Deutschland 30.10.2016
Agenda
Agenda Context Data Pipelines with Luigi Tips and
Tricks Examples
Data Processing Pipelines
cat file.txt | wc -‐ l | mail -‐s
“hello”
[email protected]
ETL
ETL • Extract data from a data source •
Transform the data • Load into a sink
None
Feature Extraction Parameter Estimation Model Training Feature Extraction
Model Predict Visualize/ Format
Steps in different technologies
Steps can be run in parallel
Steps have complex dependencies among them
Workflows • Repeat • Parametrize •
Resume • Schedule it
None
None
“A Python framework for data flow definition and execution” Luigi
Concepts
Concepts Tasks Parameters Targets Scheduler & Workers
Tasks
None
1
2
3
4
WordCountTask file.txt wc.txt
WordCountTask file.txt wc.txt ToJsonTask wc.json
None
Parameters
None
Parameters Used to idenNfy the task From arguments
or from configuraNon Many types of Parameters (int, date, boolean, date range, Nme delta, dict, enum)
Targets
Targets Resources produced by a Task Typically Local files
or files distributed file system (HDFS) Must implement the method exists() Many targets available
None
Scheduler & Workers
None
Source: h@p:/ /www.arashrouhani.com/luigid-‐basics-‐jun-‐2015
BaVeries Included
Batteries Included Package contrib filled with goodies Good support
for Hadoop Different Targets Extensible
Task Types Task -‐ Local Hadoop MR, Pig, Spark,
etc SalesForce, ElasNcsearch, etc. ExternalProgram check luigi.contrib !
Target LocalTarget HDFS, S3, FTP, SSH, WebHDFS, etc.
ESTarget, MySQLTarget, MSQL, Hive, SQLAlchemy, etc.
None
Tips & Tricks
Separate pipeline and logic
Extend to avoid boilerplate code
DRY
Conclusion Luigi is a mature, baVeries-‐included alternaNve for building
data pipelines Lacks of powerful visualizaNon of the pipelines Requires a external way of launching jobs (i.e. cron). Hard to debug MR Jobs
Lear More hVps:/ /github.com/spoNfy/luigi hVp:/ /luigi.readthedocs.io/en/stable/
Thanks!
Credits • pipe icon by Oliviu Stoian from the Noun
Project • Photo Credit: (CC) h@ps:/ /www.flickr.com/photos/ 47244853@N03/29988510886 from hb.s via Compfight • Concrete Mixer: (CC) h@ps:/ /www.flickr.com/photos/ 145708285@N03/30138453986 by MasLabor via Compfight