Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyConDE 2016 - Building Data Pipelines with P...
Search
Miguel Cabrera
October 31, 2016
Technology
0
330
PyConDE 2016 - Building Data Pipelines with Python
Miguel Cabrera
October 31, 2016
Tweet
Share
More Decks by Miguel Cabrera
See All by Miguel Cabrera
Machine Learning for Time Series Forecasting
mfcabrera
0
310
Data Science in Fashion - Exploring Demand Forecasting
mfcabrera
0
140
Helping Travellers Make Better Hotel Choices 500 Million Times a Month
mfcabrera
1
180
Europython 2016 - Things I wish I knew before using Python for Data Processing
mfcabrera
1
1.3k
PyData Berlin Meetup Nov 2015 - (Some of the) things I wish I knew before starting using Python for Data Science
mfcabrera
0
210
Python and Life Hacking with Emacs
mfcabrera
2
360
PyData Berlin 2015 - Processing Hotel Reviews with Python
mfcabrera
4
2k
Munich Datageeks - Introduction to SVM using Python
mfcabrera
2
310
Dictionary Learning for Music Genre Recognition
mfcabrera
0
260
Other Decks in Technology
See All in Technology
形式手法特論:コンパイラの「正しさ」は証明できるか? #burikaigi / BuriKaigi 2026
ytaka23
17
6.2k
AI Agent Standards and Protocols: a Walkthrough of MCP, A2A, and more...
glaforge
0
360
Kaggleコンペティション「MABe Challenge - Social Action Recognition in Mice」振り返り
yu4u
1
530
Oracle Database@AWS:サービス概要のご紹介
oracle4engineer
PRO
2
920
あの夜、私たちは「人間」に戻った。 ── 災害ユートピア、贈与、そしてアジャイルの再構築 / 20260108 Hiromitsu Akiba
shift_evolve
PRO
0
710
Introduction to Sansan Meishi Maker Development Engineer
sansan33
PRO
0
330
Git Training GitHub
yuhattor
1
130
Master Dataグループ紹介資料
sansan33
PRO
1
4.2k
Databricks Free Editionで始めるLakeflow SDP
taka_aki
0
130
Introduction to Bill One Development Engineer
sansan33
PRO
0
350
Models vs Bounded Contexts for Domain Modularizati...
ewolff
0
200
All About Sansan – for New Global Engineers
sansan33
PRO
1
1.3k
Featured
See All Featured
Building AI with AI
inesmontani
PRO
1
630
Sam Torres - BigQuery for SEOs
techseoconnect
PRO
0
170
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
340
Exploring the relationship between traditional SERPs and Gen AI search
raygrieselhuber
PRO
2
3.5k
The Curious Case for Waylosing
cassininazir
0
210
Tell your own story through comics
letsgokoyo
1
790
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.3k
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
51
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
150
Become a Pro
speakerdeck
PRO
31
5.8k
It's Worth the Effort
3n
188
29k
Raft: Consensus for Rubyists
vanstee
141
7.3k
Transcript
Building Data Pipelines with Python Data Engineer @ TY
@mfcabrera
[email protected]
Miguel Cabrera PyCon Deutschland 30.10.2016
Agenda
Agenda Context Data Pipelines with Luigi Tips and
Tricks Examples
Data Processing Pipelines
cat file.txt | wc -‐ l | mail -‐s
“hello”
[email protected]
ETL
ETL • Extract data from a data source •
Transform the data • Load into a sink
None
Feature Extraction Parameter Estimation Model Training Feature Extraction
Model Predict Visualize/ Format
Steps in different technologies
Steps can be run in parallel
Steps have complex dependencies among them
Workflows • Repeat • Parametrize •
Resume • Schedule it
None
None
“A Python framework for data flow definition and execution” Luigi
Concepts
Concepts Tasks Parameters Targets Scheduler & Workers
Tasks
None
1
2
3
4
WordCountTask file.txt wc.txt
WordCountTask file.txt wc.txt ToJsonTask wc.json
None
Parameters
None
Parameters Used to idenNfy the task From arguments
or from configuraNon Many types of Parameters (int, date, boolean, date range, Nme delta, dict, enum)
Targets
Targets Resources produced by a Task Typically Local files
or files distributed file system (HDFS) Must implement the method exists() Many targets available
None
Scheduler & Workers
None
Source: h@p:/ /www.arashrouhani.com/luigid-‐basics-‐jun-‐2015
BaVeries Included
Batteries Included Package contrib filled with goodies Good support
for Hadoop Different Targets Extensible
Task Types Task -‐ Local Hadoop MR, Pig, Spark,
etc SalesForce, ElasNcsearch, etc. ExternalProgram check luigi.contrib !
Target LocalTarget HDFS, S3, FTP, SSH, WebHDFS, etc.
ESTarget, MySQLTarget, MSQL, Hive, SQLAlchemy, etc.
None
Tips & Tricks
Separate pipeline and logic
Extend to avoid boilerplate code
DRY
Conclusion Luigi is a mature, baVeries-‐included alternaNve for building
data pipelines Lacks of powerful visualizaNon of the pipelines Requires a external way of launching jobs (i.e. cron). Hard to debug MR Jobs
Lear More hVps:/ /github.com/spoNfy/luigi hVp:/ /luigi.readthedocs.io/en/stable/
Thanks!
Credits • pipe icon by Oliviu Stoian from the Noun
Project • Photo Credit: (CC) h@ps:/ /www.flickr.com/photos/ 47244853@N03/29988510886 from hb.s via Compfight • Concrete Mixer: (CC) h@ps:/ /www.flickr.com/photos/ 145708285@N03/30138453986 by MasLabor via Compfight