Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyConDE 2016 - Building Data Pipelines with P...
Search
Miguel Cabrera
October 31, 2016
Technology
0
290
PyConDE 2016 - Building Data Pipelines with Python
Miguel Cabrera
October 31, 2016
Tweet
Share
More Decks by Miguel Cabrera
See All by Miguel Cabrera
Machine Learning for Time Series Forecasting
mfcabrera
0
250
Data Science in Fashion - Exploring Demand Forecasting
mfcabrera
0
110
Helping Travellers Make Better Hotel Choices 500 Million Times a Month
mfcabrera
1
150
Europython 2016 - Things I wish I knew before using Python for Data Processing
mfcabrera
1
1.2k
PyData Berlin Meetup Nov 2015 - (Some of the) things I wish I knew before starting using Python for Data Science
mfcabrera
0
180
Python and Life Hacking with Emacs
mfcabrera
2
310
PyData Berlin 2015 - Processing Hotel Reviews with Python
mfcabrera
4
1.8k
Munich Datageeks - Introduction to SVM using Python
mfcabrera
2
240
Dictionary Learning for Music Genre Recognition
mfcabrera
0
250
Other Decks in Technology
See All in Technology
ビジネスモデリング道場 目的と背景
masuda220
PRO
9
560
技術的負債解消の取り組みと専門チームのお話 #技術的負債_Findy
bengo4com
1
1.3k
個人開発から公式機能へ: PlaywrightとRailsをつなげた3年の軌跡
yusukeiwaki
11
3k
白金鉱業Meetup Vol.17_あるデータサイエンティストのデータマネジメントとの向き合い方
brainpadpr
6
770
滅・サービスクラス🔥 / Destruction Service Class
sinsoku
6
1.6k
レビューを増やしつつ 高評価維持するテクニック
tsuzuki817
1
740
エンジニアのためのドキュメント力基礎講座〜構造化思考から始めよう〜(2025/02/15jbug広島#15発表資料)
yasuoyasuo
18
6.9k
目の前の仕事と向き合うことで成長できる - 仕事とスキルを広げる / Every little bit counts
soudai
26
7.3k
生成 AI プロダクトを育てる技術 〜データ品質向上による継続的な価値創出の実践〜
icoxfog417
PRO
2
170
Culture Deck
optfit
0
430
データ資産をシームレスに伝達するためのイベント駆動型アーキテクチャ
kakehashi
PRO
2
550
明日からできる!技術的負債の返済を加速するための実践ガイド~『ホットペッパービューティー』の事例をもとに~
recruitengineers
PRO
3
410
Featured
See All Featured
Scaling GitHub
holman
459
140k
Thoughts on Productivity
jonyablonski
69
4.5k
Agile that works and the tools we love
rasmusluckow
328
21k
Embracing the Ebb and Flow
colly
84
4.6k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.3k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
27
1.6k
A better future with KSS
kneath
238
17k
Facilitating Awesome Meetings
lara
52
6.2k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
30
2.2k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.7k
The Pragmatic Product Professional
lauravandoore
32
6.4k
Transcript
Building Data Pipelines with Python Data Engineer @ TY
@mfcabrera
[email protected]
Miguel Cabrera PyCon Deutschland 30.10.2016
Agenda
Agenda Context Data Pipelines with Luigi Tips and
Tricks Examples
Data Processing Pipelines
cat file.txt | wc -‐ l | mail -‐s
“hello”
[email protected]
ETL
ETL • Extract data from a data source •
Transform the data • Load into a sink
None
Feature Extraction Parameter Estimation Model Training Feature Extraction
Model Predict Visualize/ Format
Steps in different technologies
Steps can be run in parallel
Steps have complex dependencies among them
Workflows • Repeat • Parametrize •
Resume • Schedule it
None
None
“A Python framework for data flow definition and execution” Luigi
Concepts
Concepts Tasks Parameters Targets Scheduler & Workers
Tasks
None
1
2
3
4
WordCountTask file.txt wc.txt
WordCountTask file.txt wc.txt ToJsonTask wc.json
None
Parameters
None
Parameters Used to idenNfy the task From arguments
or from configuraNon Many types of Parameters (int, date, boolean, date range, Nme delta, dict, enum)
Targets
Targets Resources produced by a Task Typically Local files
or files distributed file system (HDFS) Must implement the method exists() Many targets available
None
Scheduler & Workers
None
Source: h@p:/ /www.arashrouhani.com/luigid-‐basics-‐jun-‐2015
BaVeries Included
Batteries Included Package contrib filled with goodies Good support
for Hadoop Different Targets Extensible
Task Types Task -‐ Local Hadoop MR, Pig, Spark,
etc SalesForce, ElasNcsearch, etc. ExternalProgram check luigi.contrib !
Target LocalTarget HDFS, S3, FTP, SSH, WebHDFS, etc.
ESTarget, MySQLTarget, MSQL, Hive, SQLAlchemy, etc.
None
Tips & Tricks
Separate pipeline and logic
Extend to avoid boilerplate code
DRY
Conclusion Luigi is a mature, baVeries-‐included alternaNve for building
data pipelines Lacks of powerful visualizaNon of the pipelines Requires a external way of launching jobs (i.e. cron). Hard to debug MR Jobs
Lear More hVps:/ /github.com/spoNfy/luigi hVp:/ /luigi.readthedocs.io/en/stable/
Thanks!
Credits • pipe icon by Oliviu Stoian from the Noun
Project • Photo Credit: (CC) h@ps:/ /www.flickr.com/photos/ 47244853@N03/29988510886 from hb.s via Compfight • Concrete Mixer: (CC) h@ps:/ /www.flickr.com/photos/ 145708285@N03/30138453986 by MasLabor via Compfight