Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyConDE 2016 - Building Data Pipelines with P...
Search
Miguel Cabrera
October 31, 2016
Technology
0
330
PyConDE 2016 - Building Data Pipelines with Python
Miguel Cabrera
October 31, 2016
Tweet
Share
More Decks by Miguel Cabrera
See All by Miguel Cabrera
Machine Learning for Time Series Forecasting
mfcabrera
0
310
Data Science in Fashion - Exploring Demand Forecasting
mfcabrera
0
140
Helping Travellers Make Better Hotel Choices 500 Million Times a Month
mfcabrera
1
180
Europython 2016 - Things I wish I knew before using Python for Data Processing
mfcabrera
1
1.3k
PyData Berlin Meetup Nov 2015 - (Some of the) things I wish I knew before starting using Python for Data Science
mfcabrera
0
210
Python and Life Hacking with Emacs
mfcabrera
2
360
PyData Berlin 2015 - Processing Hotel Reviews with Python
mfcabrera
4
2k
Munich Datageeks - Introduction to SVM using Python
mfcabrera
2
310
Dictionary Learning for Music Genre Recognition
mfcabrera
0
260
Other Decks in Technology
See All in Technology
Bill One 開発エンジニア 紹介資料
sansan33
PRO
4
17k
Introduction to Sansan Meishi Maker Development Engineer
sansan33
PRO
0
330
製造業から学んだ「本質を守り現場に合わせるアジャイル実践」
kamitokusari
0
750
SES向け、生成AI時代におけるエンジニアリングとセキュリティ
longbowxxx
0
320
Proxmoxで作る自宅クラウド入門
koinunopochi
0
140
さくらのクラウドでのシークレット管理を考える/tamachi.sre#2
fujiwara3
1
190
All About Sansan – for New Global Engineers
sansan33
PRO
1
1.3k
マーケットプレイス版Oracle WebCenter Content For OCI
oracle4engineer
PRO
5
1.5k
GitHub Copilot CLI 現状確認会議
torumakabe
7
1.6k
SwiftDataを覗き見る
akidon0000
0
270
AWS Amplify Conference 2026 - 仕様からリリースまで一気通貫生成 AI 時代のフルスタック開発
inariku
1
190
ALB「証明書上限問題」からの脱却
nishiokashinji
0
210
Featured
See All Featured
Unsuck your backbone
ammeep
671
58k
Google's AI Overviews - The New Search
badams
0
890
So, you think you're a good person
axbom
PRO
2
1.9k
We Are The Robots
honzajavorek
0
130
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
49
First, design no harm
axbom
PRO
2
1.1k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.5k
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
420
Accessibility Awareness
sabderemane
0
35
Winning Ecommerce Organic Search in an AI Era - #searchnstuff2025
aleyda
0
1.8k
Transcript
Building Data Pipelines with Python Data Engineer @ TY
@mfcabrera
[email protected]
Miguel Cabrera PyCon Deutschland 30.10.2016
Agenda
Agenda Context Data Pipelines with Luigi Tips and
Tricks Examples
Data Processing Pipelines
cat file.txt | wc -‐ l | mail -‐s
“hello”
[email protected]
ETL
ETL • Extract data from a data source •
Transform the data • Load into a sink
None
Feature Extraction Parameter Estimation Model Training Feature Extraction
Model Predict Visualize/ Format
Steps in different technologies
Steps can be run in parallel
Steps have complex dependencies among them
Workflows • Repeat • Parametrize •
Resume • Schedule it
None
None
“A Python framework for data flow definition and execution” Luigi
Concepts
Concepts Tasks Parameters Targets Scheduler & Workers
Tasks
None
1
2
3
4
WordCountTask file.txt wc.txt
WordCountTask file.txt wc.txt ToJsonTask wc.json
None
Parameters
None
Parameters Used to idenNfy the task From arguments
or from configuraNon Many types of Parameters (int, date, boolean, date range, Nme delta, dict, enum)
Targets
Targets Resources produced by a Task Typically Local files
or files distributed file system (HDFS) Must implement the method exists() Many targets available
None
Scheduler & Workers
None
Source: h@p:/ /www.arashrouhani.com/luigid-‐basics-‐jun-‐2015
BaVeries Included
Batteries Included Package contrib filled with goodies Good support
for Hadoop Different Targets Extensible
Task Types Task -‐ Local Hadoop MR, Pig, Spark,
etc SalesForce, ElasNcsearch, etc. ExternalProgram check luigi.contrib !
Target LocalTarget HDFS, S3, FTP, SSH, WebHDFS, etc.
ESTarget, MySQLTarget, MSQL, Hive, SQLAlchemy, etc.
None
Tips & Tricks
Separate pipeline and logic
Extend to avoid boilerplate code
DRY
Conclusion Luigi is a mature, baVeries-‐included alternaNve for building
data pipelines Lacks of powerful visualizaNon of the pipelines Requires a external way of launching jobs (i.e. cron). Hard to debug MR Jobs
Lear More hVps:/ /github.com/spoNfy/luigi hVp:/ /luigi.readthedocs.io/en/stable/
Thanks!
Credits • pipe icon by Oliviu Stoian from the Noun
Project • Photo Credit: (CC) h@ps:/ /www.flickr.com/photos/ 47244853@N03/29988510886 from hb.s via Compfight • Concrete Mixer: (CC) h@ps:/ /www.flickr.com/photos/ 145708285@N03/30138453986 by MasLabor via Compfight