Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Atomic Form Factors and X Ray – Atom Scattering

Atomic Form Factors and X Ray – Atom Scattering

Slides from my talk to the School of Physics Optics Group in early 1998 (either March or April) with my physics honours thesis/project proposal into atomic form factors and x-ray - atom scattering.

Michael Papasimeon

March 30, 1998
Tweet

More Decks by Michael Papasimeon

Other Decks in Research

Transcript

  1. Atomic Form Factors and X Ray – Atom Scattering Michael

    Papasimeon 1998 Proposed Honours Project Supervisor : Dr. Chris Chantler 1
  2. Photon-Atom Scattering • Interested at how X ray scatter off

    a single atom • The types of scattering processes include – Elastic (Rayleigh) Scattering – Inelastic (Compton) Scattering – Photo Effect – Pair Production – Nuclear Thomson Scattering 2
  3. Scattering Amplitudes • Schr¨ odinger Equation for a scattering process

    [H0 + H′]ψ = Eψ • Scattering Wave Function as r → ∞ can be considered as an incident and scattered wave. ψ(r) = ψi (r) + ψs (r) ψ(r) = A eik·r + f(k, θ, φ) eikr r • f(k, θ, φ) is the scattering amplitude • Differential Cross Section dσ dΩ = |f(k, θ, φ)|2 4
  4. Relevance of Atomic Form Factors • The scattering amplitude depends

    on the atomic form factor • Scattering amplitude – form factor relationship depends on how atom-radiation interaction is modeled • Atomic Form Factors are used to determine diffraction, scattering and attenuation processes of X ray interactions with matter. 5
  5. Definition of Atomic Form Factors • Total Atomic Form Factor

    f = f0 + f′ + if′′ • Away from absorption edges (for a spherically symmetric atom) f0 (q) = eiqrρ(r)dr = 4π ∞ 0 ρ(r) sin qr qr r2dr • q = kf − ki = 2|k| sin θ 2 is the change in the photon’s momentum and θ is the scattering angle. • ρ(r) = ψ∗(r)ψ(r) is the electron density. • The real and imaginary components f′ and f′′ describe the situation when the photon energy is close to one of the atom’s energy levels – an absorption edge. 6
  6. Scattering from Multiple Atoms Experiments deal with many atoms, and

    there are a number of effects which cannot be explained by treating the atom as an isolated system. • Extended X-ray Anomalous Fine Structure (EXAFS) • X-ray Anomalous Near Edge Structure (XANES) 000 000 000 000 000 111 111 111 111 111 000 000 000 000 000 111 111 111 111 111 000 000 000 000 000 000 111 111 111 111 111 111 000 000 000 000 000 111 111 111 111 111 000 000 000 000 000 111 111 111 111 111 000 000 000 000 000 111 111 111 111 111 000 000 000 000 000 000 111 111 111 111 111 111 0000 0000 0000 0000 0000 1111 1111 1111 1111 1111 0000 0000 0000 0000 0000 1111 1111 1111 1111 1111 000 000 000 000 000 111 111 111 111 111 000 000 000 000 000 000 111 111 111 111 111 111 000 000 000 000 000 000 111 111 111 111 111 111 0000 0000 0000 0000 0000 1111 1111 1111 1111 1111 0000 0000 0000 0000 0000 1111 1111 1111 1111 1111 0000 0000 0000 0000 0000 0000 1111 1111 1111 1111 1111 1111 0000 0000 0000 0000 0000 0000 1111 1111 1111 1111 1111 1111 000 000 000 000 000 111 111 111 111 111 000 000 000 000 000 000 111 111 111 111 111 111 0000 0000 0000 0000 0000 0000 1111 1111 1111 1111 1111 1111 0000 0000 0000 0000 0000 1111 1111 1111 1111 1111 0000 0000 0000 0000 0000 1111 1111 1111 1111 1111 000 000 000 000 000 000 111 111 111 111 111 111 0000 0000 0000 0000 0000 0000 1111 1111 1111 1111 1111 1111 0000 0000 0000 0000 0000 0000 1111 1111 1111 1111 1111 1111 000 000 000 000 000 000 111 111 111 111 111 111 000 000 000 000 000 000 111 111 111 111 111 111 EXAFS XANES Atom Photoelectron 8
  7. Existing Theoretical And Experimental Results • THEORY – Partially-Relativistic Quantum

    Mechanics ∗ Hubbel, Scofield – Relativistic Quantum Mechanics ∗ Dirac-Hartree-Fock, S-Matrix, Relativistic Multipole etc. ∗ Cromer and Liberman, Kissel and Pratt, Creagh, Chantler • EXPERIMENT – Errors of 10% –20% for best data – Experimental Synthesis ∗ Henke, Gullikson – Experimental Compilation ∗ Hubbel 9
  8. Main Project Aims • Develop the theory for atomic form

    factors for low Z atoms. • Determine atomic form factors for low Z atoms and compare with existing theories and experimental results. • Investigate and develop the theory of anomalous X ray resonance scattering (EXAFS, XANES, DAFS) – effects of local interactions on the atomic form factor. 10
  9. Proposed Approach • Atom – Relativistic Quantum Mechanics (Dirac) •

    X Ray – Classical Radiation Field using electric dipole and/or electric quadrupole approximation • Investigate the effect of local interactions on the atomic form factor • Use a Dirac-Hartree-Fock computational approach to determine for multi-electron atoms the – Energy eigenvalues of the atom – Corresponding wave functions • Use these wave functions to determine the atomic form factors for the different atoms over a range of X ray energies. – Angular dependent component of the atomic form factor f0 – Energy dependent components of the atomic form factor f′ and f′′ 11