Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Metric Learning入門
Search
nishikimi
September 22, 2019
Research
6
4.7k
Metric Learning入門
Metric Learningについて基礎的な内容とArcFaceについて内容をまとめた資料です。
nishikimi
September 22, 2019
Tweet
Share
Other Decks in Research
See All in Research
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
500
AWSの耐久性のあるRedis互換KVSのMemoryDBについての論文を読んでみた
bootjp
1
420
Thirty Years of Progress in Speech Synthesis: A Personal Perspective on the Past, Present, and Future
ktokuda
0
150
スキマバイトサービスにおける現場起点でのデザインアプローチ
yoshioshingyouji
0
270
AIスーパーコンピュータにおけるLLM学習処理性能の計測と可観測性 / AI Supercomputer LLM Benchmarking and Observability
yuukit
1
530
生成的情報検索時代におけるAI利用と認知バイアス
trycycle
PRO
0
200
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
4
540
CoRL2025速報
rpc
4
3.9k
視覚から身体性を持つAIへ: 巧緻な動作の3次元理解
tkhkaeio
0
170
"主観で終わらせない"定性データ活用 ― プロダクトディスカバリーを加速させるインサイトマネジメント / Utilizing qualitative data that "doesn't end with subjectivity" - Insight management that accelerates product discovery
kaminashi
15
19k
競合や要望に流されない─B2B SaaSでミニマム要件を決めるリアルな取り組み / Don't be swayed by competitors or requests - A real effort to determine minimum requirements for B2B SaaS
kaminashi
0
550
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
390
Featured
See All Featured
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
133
19k
Noah Learner - AI + Me: how we built a GSC Bulk Export data pipeline
techseoconnect
PRO
0
87
Technical Leadership for Architectural Decision Making
baasie
0
220
Effective software design: The role of men in debugging patriarchy in IT @ Voxxed Days AMS
baasie
0
200
Paper Plane (Part 1)
katiecoart
PRO
0
3.2k
Typedesign – Prime Four
hannesfritz
42
2.9k
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
0
1k
How to build a perfect <img>
jonoalderson
1
4.8k
Automating Front-end Workflow
addyosmani
1371
200k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.5k
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
230
Music & Morning Musume
bryan
46
7k
Transcript
Metric Learning入門 2019/9/25 Rev0
本資料の位置づけ ❏ 読者の想定: Deep LearningでCNNによる画像分類の知識があるが、 Metric Learningに関する知識がない方 ❏ 最終的には、原論文を読んで欲しいですが、 基礎となる情報をスライドにまとめました。
❏ 資料は今後修正&更新していく予定です。
解こうとしているタスク 犬 人 猫 Aさん Bさん Cさん 一般物体認識 (通常の画像分類) 特徴
1クラスあたりのデータ数が少ない より詳細な物体認識 (通常の画像分類) 過学習を起こしやすい
metric learningの全体像 特徴量抽出器 (モデル) 学習時 利用時 ①同じクラスは 距離が近くなるように 学習 *実際には、n次元のベクトルです
②距離(類似度)を算出 検索したい データ
metric learningの全体像 特徴量抽出器 (モデル) 学習時 利用時 ①同じクラスは 距離が近くなるように 学習 *実際には、n次元のベクトルです
②距離(類似度)を算出 検索したい データ 学習時には 1クラス複数枚の 画像が必要 利用時には 1クラス1枚の画像でも よい
metric learningの種類 siamese network triplet network L2 softmax network 発表年
2006年〜 2014年〜 2017年〜 入力形式 2つペアを入力 3つペアを入力 ペア無しで入力 モデルの 概要 ancher
L2 softmax networkの代表的なモデル ・CosFace ・SphereFace ・ArcFace ・AdaCos
ArcFace (列ごとに)正規化 正規化 ① を とみなす ②正解ラベルに対する のみ mのペナルティを与える ① ②
③ ③logitsの値が小さいので logitをs倍する
Toyデータでの結果
None
メリット・デメリット ・通常のクラス分類のモデルに拡張する形なので実装が容易 ・クラス数が多いとパラメータ数が多くなる。 ・(学習時になかった)新しいクラスのデータに対する 予測精度が低い メリット デメリット
ArcFaceのクラス化 ・正規化 ・arcCos ・+mのペナルティ ・s倍のスケール などの一連の処理をクラス化 https://github.com/4uiiurz1/pytorch-adacos
通常の分類モデル の後にmetricモデルの 処理をつなげる インスタンス化
活用できそうなケース ・商品検索 - 例:自動販売機のジュース、コンビニにあるタバコ - 新商品が発売されても、画像が1枚あれば対応可能 ・レコメンド(ランキング) - 例:洋服のECサイトで選択した商品に似たアイテムを表示
参考リンク ・Metric Learning 入門 https://copypaste-ds.hatenablog.com/entry/2019/03/01/164155 ・モダンな深層距離学習 (deep metric learning) 手法:
SphereFace, CosFace, ArcFace https://qiita.com/yu4u/items/078054dfb5592cbb80cc ・ArcFaceの論文 https://arxiv.org/abs/1801.07698 ・Pytorchの実装コード https://github.com/4uiiurz1/pytorch-adacos