Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Metric Learning入門
Search
nishikimi
September 22, 2019
Research
6
4.7k
Metric Learning入門
Metric Learningについて基礎的な内容とArcFaceについて内容をまとめた資料です。
nishikimi
September 22, 2019
Tweet
Share
Other Decks in Research
See All in Research
cvpaper.challenge 10年の軌跡 / cvpaper.challenge a decade-long journey
gatheluck
3
370
LLM-jp-3 and beyond: Training Large Language Models
odashi
1
610
「どう育てるか」より「どう働きたいか」〜スクラムマスターの最初の一歩〜
hirakawa51
0
1k
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
370
不確実性下における目的と手段の統合的探索に向けた連続腕バンディットの応用 / iot70_gp_rff_mab
monochromegane
2
240
[CV勉強会@関東 CVPR2025] VLM自動運転model S4-Driver
shinkyoto
2
660
VectorLLM: Human-like Extraction of Structured Building Contours via Multimodal LLMs
satai
4
420
SREのためのテレメトリー技術の探究 / Telemetry for SRE
yuukit
12
1.9k
Open Gateway 5GC利用への期待と不安
stellarcraft
2
150
Time to Cash: The Full Stack Breakdown of Modern ATM Attacks
ratatata
0
170
When Learned Data Structures Meet Computer Vision
matsui_528
1
650
AIグラフィックデザインの進化:断片から統合(One Piece)へ / From Fragment to One Piece: A Survey on AI-Driven Graphic Design
shunk031
0
560
Featured
See All Featured
4 Signs Your Business is Dying
shpigford
186
22k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.1k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
192
56k
Site-Speed That Sticks
csswizardry
13
970
Why You Should Never Use an ORM
jnunemaker
PRO
60
9.6k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.8k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Transcript
Metric Learning入門 2019/9/25 Rev0
本資料の位置づけ ❏ 読者の想定: Deep LearningでCNNによる画像分類の知識があるが、 Metric Learningに関する知識がない方 ❏ 最終的には、原論文を読んで欲しいですが、 基礎となる情報をスライドにまとめました。
❏ 資料は今後修正&更新していく予定です。
解こうとしているタスク 犬 人 猫 Aさん Bさん Cさん 一般物体認識 (通常の画像分類) 特徴
1クラスあたりのデータ数が少ない より詳細な物体認識 (通常の画像分類) 過学習を起こしやすい
metric learningの全体像 特徴量抽出器 (モデル) 学習時 利用時 ①同じクラスは 距離が近くなるように 学習 *実際には、n次元のベクトルです
②距離(類似度)を算出 検索したい データ
metric learningの全体像 特徴量抽出器 (モデル) 学習時 利用時 ①同じクラスは 距離が近くなるように 学習 *実際には、n次元のベクトルです
②距離(類似度)を算出 検索したい データ 学習時には 1クラス複数枚の 画像が必要 利用時には 1クラス1枚の画像でも よい
metric learningの種類 siamese network triplet network L2 softmax network 発表年
2006年〜 2014年〜 2017年〜 入力形式 2つペアを入力 3つペアを入力 ペア無しで入力 モデルの 概要 ancher
L2 softmax networkの代表的なモデル ・CosFace ・SphereFace ・ArcFace ・AdaCos
ArcFace (列ごとに)正規化 正規化 ① を とみなす ②正解ラベルに対する のみ mのペナルティを与える ① ②
③ ③logitsの値が小さいので logitをs倍する
Toyデータでの結果
None
メリット・デメリット ・通常のクラス分類のモデルに拡張する形なので実装が容易 ・クラス数が多いとパラメータ数が多くなる。 ・(学習時になかった)新しいクラスのデータに対する 予測精度が低い メリット デメリット
ArcFaceのクラス化 ・正規化 ・arcCos ・+mのペナルティ ・s倍のスケール などの一連の処理をクラス化 https://github.com/4uiiurz1/pytorch-adacos
通常の分類モデル の後にmetricモデルの 処理をつなげる インスタンス化
活用できそうなケース ・商品検索 - 例:自動販売機のジュース、コンビニにあるタバコ - 新商品が発売されても、画像が1枚あれば対応可能 ・レコメンド(ランキング) - 例:洋服のECサイトで選択した商品に似たアイテムを表示
参考リンク ・Metric Learning 入門 https://copypaste-ds.hatenablog.com/entry/2019/03/01/164155 ・モダンな深層距離学習 (deep metric learning) 手法:
SphereFace, CosFace, ArcFace https://qiita.com/yu4u/items/078054dfb5592cbb80cc ・ArcFaceの論文 https://arxiv.org/abs/1801.07698 ・Pytorchの実装コード https://github.com/4uiiurz1/pytorch-adacos