Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Metric Learning入門
Search
nishikimi
September 22, 2019
Research
6
4.7k
Metric Learning入門
Metric Learningについて基礎的な内容とArcFaceについて内容をまとめた資料です。
nishikimi
September 22, 2019
Tweet
Share
Other Decks in Research
See All in Research
SSII2025 [SS2] 横浜DeNAベイスターズの躍進を支えたAIプロダクト
ssii
PRO
7
4k
AlphaEarth Foundations: An embedding field model for accurate and efficient global mapping from sparse label data
satai
1
200
SSII2025 [TS3] 医工連携における画像情報学研究
ssii
PRO
2
1.3k
AIグラフィックデザインの進化:断片から統合(One Piece)へ / From Fragment to One Piece: A Survey on AI-Driven Graphic Design
shunk031
0
430
[輪講] SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features
nk35jk
2
980
20250605_新交通システム推進議連_熊本都市圏「車1割削減、渋滞半減、公共交通2倍」から考える地方都市交通政策
trafficbrain
0
760
2021年度-基盤研究B-研究計画調書
trycycle
PRO
0
290
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
160
投資戦略202508
pw
0
560
【緊急警告】日本の未来設計図 ~沈没か、再生か。国民と断行するラストチャンス~
yuutakasan
0
150
[RSJ25] Enhancing VLA Performance in Understanding and Executing Free-form Instructions via Visual Prompt-based Paraphrasing
keio_smilab
PRO
0
100
「どう育てるか」より「どう働きたいか」〜スクラムマスターの最初の一歩〜
hirakawa51
0
860
Featured
See All Featured
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.6k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
51
5.6k
Side Projects
sachag
455
43k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.9k
Code Reviewing Like a Champion
maltzj
525
40k
Designing for Performance
lara
610
69k
BBQ
matthewcrist
89
9.8k
Statistics for Hackers
jakevdp
799
220k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
920
How to Think Like a Performance Engineer
csswizardry
26
1.9k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.7k
Transcript
Metric Learning入門 2019/9/25 Rev0
本資料の位置づけ ❏ 読者の想定: Deep LearningでCNNによる画像分類の知識があるが、 Metric Learningに関する知識がない方 ❏ 最終的には、原論文を読んで欲しいですが、 基礎となる情報をスライドにまとめました。
❏ 資料は今後修正&更新していく予定です。
解こうとしているタスク 犬 人 猫 Aさん Bさん Cさん 一般物体認識 (通常の画像分類) 特徴
1クラスあたりのデータ数が少ない より詳細な物体認識 (通常の画像分類) 過学習を起こしやすい
metric learningの全体像 特徴量抽出器 (モデル) 学習時 利用時 ①同じクラスは 距離が近くなるように 学習 *実際には、n次元のベクトルです
②距離(類似度)を算出 検索したい データ
metric learningの全体像 特徴量抽出器 (モデル) 学習時 利用時 ①同じクラスは 距離が近くなるように 学習 *実際には、n次元のベクトルです
②距離(類似度)を算出 検索したい データ 学習時には 1クラス複数枚の 画像が必要 利用時には 1クラス1枚の画像でも よい
metric learningの種類 siamese network triplet network L2 softmax network 発表年
2006年〜 2014年〜 2017年〜 入力形式 2つペアを入力 3つペアを入力 ペア無しで入力 モデルの 概要 ancher
L2 softmax networkの代表的なモデル ・CosFace ・SphereFace ・ArcFace ・AdaCos
ArcFace (列ごとに)正規化 正規化 ① を とみなす ②正解ラベルに対する のみ mのペナルティを与える ① ②
③ ③logitsの値が小さいので logitをs倍する
Toyデータでの結果
None
メリット・デメリット ・通常のクラス分類のモデルに拡張する形なので実装が容易 ・クラス数が多いとパラメータ数が多くなる。 ・(学習時になかった)新しいクラスのデータに対する 予測精度が低い メリット デメリット
ArcFaceのクラス化 ・正規化 ・arcCos ・+mのペナルティ ・s倍のスケール などの一連の処理をクラス化 https://github.com/4uiiurz1/pytorch-adacos
通常の分類モデル の後にmetricモデルの 処理をつなげる インスタンス化
活用できそうなケース ・商品検索 - 例:自動販売機のジュース、コンビニにあるタバコ - 新商品が発売されても、画像が1枚あれば対応可能 ・レコメンド(ランキング) - 例:洋服のECサイトで選択した商品に似たアイテムを表示
参考リンク ・Metric Learning 入門 https://copypaste-ds.hatenablog.com/entry/2019/03/01/164155 ・モダンな深層距離学習 (deep metric learning) 手法:
SphereFace, CosFace, ArcFace https://qiita.com/yu4u/items/078054dfb5592cbb80cc ・ArcFaceの論文 https://arxiv.org/abs/1801.07698 ・Pytorchの実装コード https://github.com/4uiiurz1/pytorch-adacos