Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data-driven Innovation
Search
Matt Wood
October 10, 2012
Technology
1
410
Data-driven Innovation
Slides from my session at the #AWS Public Sector Summit, 2012.
Matt Wood
October 10, 2012
Tweet
Share
More Decks by Matt Wood
See All by Matt Wood
Field Notes from Expeditions in the Cloud
mza
2
430
A Platform for Big Data
mza
6
790
The Data Lifecycle
mza
5
530
Provision Throughput Like a Boss
mza
0
480
Impact of Cloud Computing: Life Sciences
mza
2
880
Latency's Worst Nightmare: Performance Tuning Tips and Tricks
mza
4
1.1k
Under the Covers of DynamoDB
mza
4
1.1k
From Analytics to Intelligence: Amazon Redshift
mza
9
1k
Scaling Science
mza
3
540
Other Decks in Technology
See All in Technology
なぜThrottleではなくDebounceだったのか? 700並列リクエストと戦うサーバーサイド実装のすべて
yoshiori
9
3.4k
Claude Code 10連ガチャ
uhyo
3
660
決済システムの信頼性を支える技術と運用の実践
ykagano
0
480
手を動かしながら学ぶデータモデリング - 論理設計から物理設計まで / Data modeling
soudai
PRO
15
3.8k
やり方は一つだけじゃない、正解だけを目指さず寄り道やその先まで自分流に楽しむ趣味プログラミングの探求 2025-11-15 YAPC::Fukuoka
sugyan
1
300
從裝潢設計圖到 Home Assistant:打造智慧家庭的實戰與踩坑筆記
kewang
0
160
「データ無い! 腹立つ! 推論する!」から 「データ無い! 腹立つ! データを作る」へ チームでデータを作り、育てられるようにするまで / How can we create, use, and maintain data ourselves?
moznion
6
3.5k
レビュー負債を解消する ― CodeRabbitが支えるAI駆動開発
moongift
PRO
0
110
エンジニアに定年なし! AI時代にキャリアをReboot — 学び続けて未来を創る
junjikoide
0
180
設計は最強のプロンプト - AI時代に武器にすべきスキルとは?-
kenichirokimura
1
350
Amazon ECS デプロイツール ecspresso の開発を支える「正しい抽象化」の探求 / YAPC::Fukuoka 2025
fujiwara3
10
1.7k
ステートレスなLLMでステートフルなAI agentを作る - YAPC::Fukuoka 2025
gfx
2
480
Featured
See All Featured
Faster Mobile Websites
deanohume
310
31k
A designer walks into a library…
pauljervisheath
210
24k
Statistics for Hackers
jakevdp
799
220k
[RailsConf 2023] Rails as a piece of cake
palkan
57
6k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
A Tale of Four Properties
chriscoyier
161
23k
Why You Should Never Use an ORM
jnunemaker
PRO
60
9.6k
The World Runs on Bad Software
bkeepers
PRO
72
12k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Transcript
Data-driven innovation
[email protected]
Dr. Matt Wood @mza
Hello
Hello
Data
DNA
Chromosome 11 : ACTN3 : rs1815739
Chromosome X : rs6625163
Chromosome 19 : FUT2 : rs601338
Chromosome 2 : rs10427255
TYPE II Chromosome 10 : rs7903146
+0.25 Chromosome 15 : rs2472297
I know this, because...
None
A T C G G T C C A G
G
A T C G G T C C A G
G A G C C A G G U C C Transcription
A T C G G T C C A G
G A G C C A G G U C C Translation Ser Glu Val Transcription
None
None
Chromosome 11 : ACTN3 : rs1815739
Chromosome X : rs6625163
Chromosome 19 : FUT2 : rs601338
Chromosome 2 : rs10427255
TYPE II Chromosome 10 : rs7903146
+0.25 Chromosome 15 : rs2472297
I know all that, because...
Human Genome Project
40 species ensembl.org
Compare
Change
Less
None
None
Compare
Transformative
None
Data generation costs are falling everywhere
Customer segmentation, financial modeling, system analysis, line of sight, business
intelligence.
Opportunity
Transformation
Innovation
Generation Collection & storage Analytics & computation Collaboration & sharing
Generation Collection & storage Analytics & computation Collaboration & sharing
lower cost, increased throughput
Generation Collection & storage Analytics & computation Collaboration & sharing
lower cost, increased throughput highly constrained
Barrier
Data generation challenge X
Analytics challenge
Accessibility challenge
Enter the AWS Cloud
Utility
Remove constraints
Data-driven innovation
Distributed
2
2 Software for distributed storage & analysis
2 Software for distributed storage & analysis Infrastructure for distributed
storage & analysis
Software Frameworks for data-intensive work loads. Distributed by design.
Infrastructure Platform for data-intensive work loads. Distributed by design.
Support the data timeline
Generation Collection & storage Analytics & computation Collaboration & sharing
highly constrained
Generation Collection & storage Analytics & computation Collaboration & sharing
Lower the barrier to entry
Agility
Responsive
Generation Collection & storage Analytics & computation Collaboration & sharing
Generation DynamoDB Analytics & computation Collaboration & sharing
Generation DynamoDB EC2, Elastic MapReduce Collaboration & sharing
Generation DynamoDB EC2, Elastic MapReduce S3, Public Datasets
Tools and techniques for working productively with data
Scale
Secure
2 Software for distributed storage & analysis Infrastructure for distributed
storage & analysis
Amazon EC2
Scale out systems Embarrassingly parallel Queue based distribution Small, medium
and high scale
High performance
High performance Compute performance
Cluster Compute Intel Xeon E5-2670 10 gigabit, non-blocking network 60.5
Gb Placement groupings
Cluster Compute Intel Xeon E5-2670 10 gigabit, non-blocking network 60.5
Gb Placement groupings +GPU
240 TFLOPS
High performance Compute performance IO performance
Unstructured
Variable
Amazon DynamoDB Predictable, consistent performance Unlimited storage Single digit millisecond
latencies No schema. Zero admin.
...and SSDs for all
hi1.4xlarge 2 x 1Tb SSD storage 10 gigabit networking HVM:
90k IOPS read, 9k to 75k write PV: 120k IOPS read, 10k to 85k write
Netflix “The hi1.4xlarge configuration is about half the system cost
for the same throughput.” http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
Provisioned IOPS Provision required IO performance EBS optimized instances
Cost optimization
Reserved capacity
Reserved capacity On-demand
Reserved capacity On-demand
Spot instances
None
$0.2530 vs $2.40
2 Software for distributed storage & analysis Infrastructure for distributed
storage & analysis
map/reduce
Map. Reduce.
Write functions. Scale up.
Hadoop
Undi erentiated heavy lifting
Amazon Elastic MapReduce Managed Hadoop Clusters Easy to provision and
monitor Write two functions. Scale up. Choice of Hadoop flavors
Amazon Elastic MapReduce Integrates with S3 Analytics for DynamoDB Perfect
for Spot pricing
Input data S3
Elastic MapReduce Code Input data S3
Elastic MapReduce Code Name node Input data S3
Elastic MapReduce Code Name node Input data S3 Elastic cluster
Elastic MapReduce Code Name node Input data S3 Elastic cluster
HDFS
Elastic MapReduce Code Name node Input data S3 Elastic cluster
HDFS Queries + BI Via JDBC, Pig, Hive
Elastic MapReduce Code Name node Output S3 + SimpleDB Input
data S3 Elastic cluster HDFS Queries + BI Via JDBC, Pig, Hive
Output S3 + SimpleDB Input data S3
CDC Centers for Disease Control and Prevention
“BioSense 2.0 protects the health of the American people by
providing timely insight into the health of communities, regions, and the nation by o ering a variety of features to improve data collection, standardization, storage, analysis, and collaboration”
Health data Collection & storage Analytics & computation Collaboration &
sharing
Health data Collection & storage Analytics & computation Collaboration &
sharing highly constrained
HIPAA, HITECH, FISMA Moderate
GovCloud
Beyond a definition of Big Data
Chromosome 11 : ACTN3 : rs1815739
Chromosome X : rs6625163
Chromosome 19 : FUT2 : rs601338
Chromosome 2 : rs10427255
TYPE II Chromosome 10 : rs7903146
+0.25 Chromosome 15 : rs2472297
Thank you aws.amazon.com @mza
[email protected]