Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Scaling Science
Search
Matt Wood
November 21, 2012
Science
3
480
Scaling Science
Introducing five principles for reproducibility.
Matt Wood
November 21, 2012
Tweet
Share
More Decks by Matt Wood
See All by Matt Wood
Field Notes from Expeditions in the Cloud
mza
2
380
A Platform for Big Data
mza
6
740
The Data Lifecycle
mza
5
490
Provision Throughput Like a Boss
mza
0
430
Impact of Cloud Computing: Life Sciences
mza
2
840
Latency's Worst Nightmare: Performance Tuning Tips and Tricks
mza
4
1.1k
Under the Covers of DynamoDB
mza
4
1k
From Analytics to Intelligence: Amazon Redshift
mza
9
980
High Performance Web Applications
mza
6
620
Other Decks in Science
See All in Science
小杉考司(専修大学)
kosugitti
2
650
Cross-Media Information Spaces and Architectures (CISA)
signer
PRO
3
31k
メール送信サーバの集約における透過型SMTP プロキシの定量評価 / Quantitative Evaluation of Transparent SMTP Proxy in Email Sending Server Aggregation
linyows
0
870
Trend Classification of InSAR Displacement Time Series Using SAE–CNN
satai
3
310
応用心理学Ⅰテキストマイニング講義資料講義編(2024年度)
satocos135
0
140
私たちのプロダクトにとってのよいテスト/good test for our products
camel_404
0
290
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
180
地質研究者が苦労しながら運用する情報公開システムの実例
naito2000
0
160
Valuable Lessons Learned on Kaggle’s ARC AGI LLM Challenge (PyDataGlobal 2024)
ianozsvald
0
360
地表面抽出の方法であるSMRFについて紹介
kentaitakura
1
640
点群ライブラリPDALをGoogleColabにて実行する方法の紹介
kentaitakura
1
190
Transformers are Universal in Context Learners
gpeyre
0
800
Featured
See All Featured
Building Flexible Design Systems
yeseniaperezcruz
329
39k
How to Ace a Technical Interview
jacobian
276
23k
Automating Front-end Workflow
addyosmani
1370
200k
Rails Girls Zürich Keynote
gr2m
94
13k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Java REST API Framework Comparison - PWX 2021
mraible
31
8.6k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.2k
Faster Mobile Websites
deanohume
307
31k
Rebuilding a faster, lazier Slack
samanthasiow
81
9k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
13
840
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
105
19k
Documentation Writing (for coders)
carmenintech
71
4.8k
Transcript
Scaling Science
[email protected]
Dr. Matt Wood
Hello
Science
Beautiful, unique.
Impossible to re-create
Snowflake Science
Reproducibility
Reproducibility scales science
Reproduce. Reuse. Remix.
Value++
None
How do we get from here to there? 5PRINCIPLES REPRODUCIBILITY
OF
1. Data has Gravity 5 PRINCIPLES REPRODUCIBILITY OF
Increasingly large data collections
1000 Genomes Project: 200Tb
Challenging to obtain and manage
Expensive to experiment
Large barrier to reproducibility
Data size will increase
Data integration will increase
Data dependencies will increase
Move data to the users
Move data to the users X
Move tools to the data
Place data where it can consumed by tools
Place tools where they can access data
None
None
None
Canonical source
None
More data, more users, more uses, more locations
Cost
Force multiplier
Cost
Complexity
Cost and complexity kill reproducibility
Utility computing
Availability
Pay-as-you-go
Flexibility
Performance
CPU + IO
Intel Xeon E5 NVIDIA Tesla GPUs
240 TFLOPS
90 - 120k IOPS on SSDs
Performance through productivity
Cost
On-demand access
Reserved capacity
100% Reserved capacity
100% Reserved capacity On-demand
100% Reserved capacity On-demand
Spot instances
Utility computing enhanced reproducibility
None
2. Ease of use is a pre-requisite 5 PRINCIPLES REPRODUCIBILITY
OF
http://headrush.typepad.com/creating_passionate_users/2005/10/getting_users_p.html
Help overcome the suck threshold
Easy to embrace and extend
Choose the right abstraction for the user
$ ec2-run-instances
$ starcluster start
None
Package and automate
Package and automate Amazon machine images, VM import
Package and automate Amazon machine images, VM import Deployment scripts,
CloudFormation, Chef, Puppet
Expert-as-a-service
None
None
1000 Genomes Cloud BioLinux
None
Your HiSeq data Illumina BaseSpace
Architectural freedom
Freedom of abstraction
3. Reuse is as important as reproduction 5 PRINCIPLES REPRODUCIBILITY
OF
Seven Deadly sins of Bioinformatics: http://www.slideshare.net/dullhunk/the-seven-deadly-sins-of-bioinformatics
Seven Deadly sins of Bioinformatics: http://www.slideshare.net/dullhunk/the-seven-deadly-sins-of-bioinformatics
Infonauts are hackers
They have their own way of working
The ‘Big Red Button’
Fire and forget reproduction is a good first step, but
limits longer term value.
Monolithic, one-stop-shop
Work well for intended purpose
Challenging to install, dependency heavy
Di cult to grok
Inflexible
Infonauts are hackers: embrace it.
Small things. Loosely coupled.
Easier to grok
Easier to reuse
Easier to integrate
Lower barrier to entry
Scale out
Build for reuse. Be remix friendly. Maximize value.
4. Build for collaboration 5 PRINCIPLES REPRODUCIBILITY OF
Workflows are memes
Reproduction is just the first step
Bill of materials: code, data, configuration, infrastructure
Full definition for reproduction
Utility computing provides a playground for bioinformatics
Code + AMI + custom datasets + public datasets +
databases + compute + result data
Code + AMI + custom datasets + public datasets +
databases + compute + result data
Code + AMI + custom datasets + public datasets +
databases + compute + result data
Code + AMI + custom datasets + public datasets +
databases + compute + result data
Package, automate, contribute.
Utility platform provides scale for production runs
Drug discovery on 50k cores: Less than $1000
5. Provenance is a first class object 5 PRINCIPLES REPRODUCIBILITY
OF
Versioning becomes really important
Especially in an active community
Doubly so with loosely coupled tools
Provenance metadata is a first class entity
Distributed provenance
1. Data has gravity 2. Ease of use is a
pre-requisite 3. Reuse is as important as reproduction 4. Build for collaboration 5. Provenance is a first class object 5PRINCIPLES REPRODUCIBILITY OF
None
Thank you aws.amazon.com @mza
[email protected]