Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Hub Labeling による高速経路探索
Search
NearMeの技術発表資料です
PRO
June 06, 2025
0
160
Hub Labeling による高速経路探索
NearMeの技術発表資料です
PRO
June 06, 2025
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
Rust 製のコードエディタ “Zed” を使ってみた
nearme_tech
PRO
0
39
実践で使えるtorchのテンソル演算
nearme_tech
PRO
0
6
ローカルLLMを⽤いてコード補完を⾏う VSCode拡張機能を作ってみた
nearme_tech
PRO
0
310
初めてのmarimo (ハンズオン)
nearme_tech
PRO
0
26
ローカルLLM
nearme_tech
PRO
0
47
LlamaIndex Workflow: Build Practical AI Agents Fast
nearme_tech
PRO
0
29
Box-Muller法
nearme_tech
PRO
1
41
Kiro触ってみた
nearme_tech
PRO
0
360
今だからこそ入門する Server-Sent Events (SSE)
nearme_tech
PRO
4
600
Featured
See All Featured
The browser strikes back
jonoalderson
0
310
Site-Speed That Sticks
csswizardry
13
1k
Bash Introduction
62gerente
615
210k
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
How to make the Groovebox
asonas
2
1.9k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
287
14k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
How to Align SEO within the Product Triangle To Get Buy-In & Support - #RIMC
aleyda
1
1.4k
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.2k
Facilitating Awesome Meetings
lara
57
6.7k
Transcript
Hub Labeling による⾼速経路探索 2025-06-06 第123回NearMe技術勉強会 Shunma Serizawa
⽬次 1. 最短経路問題とは? 2. Hub Labeling の概要と利点 3. Hub Labeling
の仕組み 4. 実装と⽐較
1. 最短経路問題とは? • 最短経路問題とは? →ある場所から、他のある場所へ⾏くとき、最も移動距離 (時間) の 短いものを⾒つける • 有名なアルゴリズム
- ベルマンフォード法 - ダイクストラ法
2. Hub Labeling の概要と利点 • Hub Labeling とは? →最短経路クエリを⾼速に処理するための事前計算ベースの アルゴリズム
- 各頂点に対して、「ラベル」という情報を保持 - ラベルには、ある共通の「中継点(hub)」とその距離を記録 - クエリ時は、出発点と到着点のラベルを⽐較し、共通の hub を通 る経路の中で最短のものを選ぶ
2. Hub Labeling の概要と利点 • Hub Labeling の利点 - クエリ時間が⾮常に短い
- ハブ情報に経路中継情報を持たせると、経路を復元できる - 道路ネットワークのような疎なグラフが得意 • Hub Labeling の⽋点 - 前処理が重い - 動的グラフへの適⽤が困難
3. Hub Labeling の仕組み A B C D E F
G 1 2 2 3 2 2 1 3 2
3. Hub Labeling の仕組み A B C D E F
G 1 2 2 3 2 2 1 3 2 ラベリング A: (B, 1), (C, 2), (E, 3) B: (A, 1), (E, 2), (F, 3) C: (A, 2), (D, 2), (E, 2) D: (C, 3), (F, 2) E: (B, 2), (C, 2), (F, 1) F: (E, 1), (G, 2) G: (E, 3), (F, 2)
3. Hub Labeling の仕組み A B C D E F
G 1 2 2 3 2 2 1 3 2 ラベリング A: (B, 1), (C, 2), (E, 3) B: (A, 1), (E, 2), (F, 3) C: (A, 2), (D, 2), (E, 2) D: (C, 3), (F, 2) E: (B, 2), (C, 2), (F, 1) F: (E, 1), (G, 2) G: (E, 3), (F, 2)
3. Hub Labeling の仕組み A B C D E F
G 1 2 2 3 2 2 1 3 2 ラベリング A: (B, 1), (C, 2), (E, 3) B: (A, 1), (E, 2), (F, 3) C: (A, 2), (D, 2), (E, 2) D: (C, 3), (F, 2) E: (B, 2), (C, 2), (F, 1) F: (E, 1), (G, 2) G: (E, 3), (F, 2)
3. Hub Labeling の仕組み • Hub 数は性能に直結! - 各ノードのラベルに含まれるハブ数が少ないほど、クエリは⾼速 -
上⼿く設計すれば、数千万ノードでもノードあたりの平均ハブ数 は数⼗程度に • 上⼿く設計するには? - Contraction Hierarchies - Pruned Highway Labeling
4. 実装と⽐較 • データ - 東京駅を中⼼とした、⼀辺が 10 km の正⽅形内の道路情報 -
道路を無向辺、交差点を頂点 - 頂点数が 27247 、辺の数が 73624 • ⽐較⽅法 - ランダムな頂点対 1000 組の最短距離を取得 これくらい→
4. 実装と⽐較 前計算 クエリ Dijkstra - 50 ms Hub Labeling
3 時間くらい 0.5 ms
参考⽂献 • Route Planning in Transportation Networks ◦ https://arxiv.org/pdf/1504.05140 •
A Hub-Based Labeling Algorithm for Shortest Paths on Road Networks ◦ https://www.microsoft.com/en-us/research/wp-content/ uploads/2010/12/HL-TR.pdf
Thank you