Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Hub Labeling による高速経路探索
Search
NearMeの技術発表資料です
PRO
June 06, 2025
0
120
Hub Labeling による高速経路探索
NearMeの技術発表資料です
PRO
June 06, 2025
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
LlamaIndex Workflow: Build Practical AI Agents Fast
nearme_tech
PRO
0
5
Box-Muller法
nearme_tech
PRO
1
16
Kiro触ってみた
nearme_tech
PRO
0
51
今だからこそ入門する Server-Sent Events (SSE)
nearme_tech
PRO
4
380
ReactNative のアップグレード作業が (意外に)楽しかった話
nearme_tech
PRO
2
96
強化学習アルゴリズムPPOの改善案を考えてみた
nearme_tech
PRO
0
34
Apple Containerについて調べて触ってみた
nearme_tech
PRO
0
440
Rust 並列強化学習
nearme_tech
PRO
0
32
並列で⽣成AIにコーディングをやらせる
nearme_tech
PRO
1
220
Featured
See All Featured
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
10
890
The Cult of Friendly URLs
andyhume
79
6.6k
Building Applications with DynamoDB
mza
96
6.7k
A Tale of Four Properties
chriscoyier
161
23k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
30
2.9k
Code Reviewing Like a Champion
maltzj
526
40k
Into the Great Unknown - MozCon
thekraken
40
2.1k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Designing for Performance
lara
610
69k
Agile that works and the tools we love
rasmusluckow
331
21k
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
Transcript
Hub Labeling による⾼速経路探索 2025-06-06 第123回NearMe技術勉強会 Shunma Serizawa
⽬次 1. 最短経路問題とは? 2. Hub Labeling の概要と利点 3. Hub Labeling
の仕組み 4. 実装と⽐較
1. 最短経路問題とは? • 最短経路問題とは? →ある場所から、他のある場所へ⾏くとき、最も移動距離 (時間) の 短いものを⾒つける • 有名なアルゴリズム
- ベルマンフォード法 - ダイクストラ法
2. Hub Labeling の概要と利点 • Hub Labeling とは? →最短経路クエリを⾼速に処理するための事前計算ベースの アルゴリズム
- 各頂点に対して、「ラベル」という情報を保持 - ラベルには、ある共通の「中継点(hub)」とその距離を記録 - クエリ時は、出発点と到着点のラベルを⽐較し、共通の hub を通 る経路の中で最短のものを選ぶ
2. Hub Labeling の概要と利点 • Hub Labeling の利点 - クエリ時間が⾮常に短い
- ハブ情報に経路中継情報を持たせると、経路を復元できる - 道路ネットワークのような疎なグラフが得意 • Hub Labeling の⽋点 - 前処理が重い - 動的グラフへの適⽤が困難
3. Hub Labeling の仕組み A B C D E F
G 1 2 2 3 2 2 1 3 2
3. Hub Labeling の仕組み A B C D E F
G 1 2 2 3 2 2 1 3 2 ラベリング A: (B, 1), (C, 2), (E, 3) B: (A, 1), (E, 2), (F, 3) C: (A, 2), (D, 2), (E, 2) D: (C, 3), (F, 2) E: (B, 2), (C, 2), (F, 1) F: (E, 1), (G, 2) G: (E, 3), (F, 2)
3. Hub Labeling の仕組み A B C D E F
G 1 2 2 3 2 2 1 3 2 ラベリング A: (B, 1), (C, 2), (E, 3) B: (A, 1), (E, 2), (F, 3) C: (A, 2), (D, 2), (E, 2) D: (C, 3), (F, 2) E: (B, 2), (C, 2), (F, 1) F: (E, 1), (G, 2) G: (E, 3), (F, 2)
3. Hub Labeling の仕組み A B C D E F
G 1 2 2 3 2 2 1 3 2 ラベリング A: (B, 1), (C, 2), (E, 3) B: (A, 1), (E, 2), (F, 3) C: (A, 2), (D, 2), (E, 2) D: (C, 3), (F, 2) E: (B, 2), (C, 2), (F, 1) F: (E, 1), (G, 2) G: (E, 3), (F, 2)
3. Hub Labeling の仕組み • Hub 数は性能に直結! - 各ノードのラベルに含まれるハブ数が少ないほど、クエリは⾼速 -
上⼿く設計すれば、数千万ノードでもノードあたりの平均ハブ数 は数⼗程度に • 上⼿く設計するには? - Contraction Hierarchies - Pruned Highway Labeling
4. 実装と⽐較 • データ - 東京駅を中⼼とした、⼀辺が 10 km の正⽅形内の道路情報 -
道路を無向辺、交差点を頂点 - 頂点数が 27247 、辺の数が 73624 • ⽐較⽅法 - ランダムな頂点対 1000 組の最短距離を取得 これくらい→
4. 実装と⽐較 前計算 クエリ Dijkstra - 50 ms Hub Labeling
3 時間くらい 0.5 ms
参考⽂献 • Route Planning in Transportation Networks ◦ https://arxiv.org/pdf/1504.05140 •
A Hub-Based Labeling Algorithm for Shortest Paths on Road Networks ◦ https://www.microsoft.com/en-us/research/wp-content/ uploads/2010/12/HL-TR.pdf
Thank you