Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
強化学習アルゴリズムPPOの改善案を考えてみた
Search
NearMeの技術発表資料です
PRO
August 22, 2025
0
110
強化学習アルゴリズムPPOの改善案を考えてみた
NearMeの技術発表資料です
PRO
August 22, 2025
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
Rust 製のコードエディタ “Zed” を使ってみた
nearme_tech
PRO
0
39
実践で使えるtorchのテンソル演算
nearme_tech
PRO
0
6
ローカルLLMを⽤いてコード補完を⾏う VSCode拡張機能を作ってみた
nearme_tech
PRO
0
310
初めてのmarimo (ハンズオン)
nearme_tech
PRO
0
26
ローカルLLM
nearme_tech
PRO
0
47
LlamaIndex Workflow: Build Practical AI Agents Fast
nearme_tech
PRO
0
29
Box-Muller法
nearme_tech
PRO
1
41
Kiro触ってみた
nearme_tech
PRO
0
360
今だからこそ入門する Server-Sent Events (SSE)
nearme_tech
PRO
4
600
Featured
See All Featured
Automating Front-end Workflow
addyosmani
1371
200k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
[SF Ruby Conf 2025] Rails X
palkan
0
710
Code Reviewing Like a Champion
maltzj
527
40k
Navigating Team Friction
lara
191
16k
Testing 201, or: Great Expectations
jmmastey
46
7.9k
The #1 spot is gone: here's how to win anyway
tamaranovitovic
1
890
Are puppies a ranking factor?
jonoalderson
0
2.6k
A Modern Web Designer's Workflow
chriscoyier
698
190k
Discover your Explorer Soul
emna__ayadi
2
1k
Building the Perfect Custom Keyboard
takai
2
670
Stewardship and Sustainability of Urban and Community Forests
pwiseman
0
100
Transcript
0 強化学習アルゴリズムPPOの改善案を考えてみた 2025-08-22 第128回NearMe技術勉強会 Takuma KAKINOUE
1 概要 • 強化学習の従来のオンポリシーアルゴリズムの⽋点 ◦ 良い⾏動軌跡を⾒つけて⼀度学習しても、探索するうちに忘れてしまう • 提案⼿法 ◦ 報酬が⾼かったエピソードの各ステップの⾏動確率分布を記録する
◦ “記録した分布”と”現在の⽅策が出⼒した分布”のKLダイバージェンスを計算 ◦ 算出したKLダイバージェンスを最⼩化する項を⽬的関数に加える
2 提案⼿法の実装詳細 • ベースはProximal Policy Optimization(PPO)で⽬的関数のみ以下のよう に変更した ※提案⼿法は、Anchored Policy Optimization(APO)と名付けた
• KLダイバージェンスの計算⽅向は、best→θとした ◦ bestな分布を含むように(再現できるように)θが最適化される ◦ 逆向きだとbestな分布に含まれるようになるため縛りが強くなる
3 CartPole-v1での実験結果 • 横軸:エピソード、縦軸:報酬(100エピソード移動平均) • オレンジ:従来⼿法(PPO)、⻘:提案⼿法(APO) 初期の立ち上が りは遅い(bestな 分布に縛られる ため)
良い軌跡が得られ たら、その軌跡にア ンカーされるため安 定する
4 今後の展望 • 複数エージェントで並列化訓練させる仕組みと組み合わせてみる ◦ どれか1つのエージェントが良い⾏動軌跡を発⾒したら、他のエージェントに も共有して、良い⾏動軌跡にアンカーすることで学習の安定性と効率を向上 させる狙い • スーパーマリオなどの滅多にゴールに辿り着けない環境で真価を発揮するのでは
ないかと考えているので実験してみる
5 Thank you