Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Rust 並列強化学習
Search
NearMeの技術発表資料です
PRO
July 18, 2025
0
67
Rust 並列強化学習
NearMeの技術発表資料です
PRO
July 18, 2025
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
Tile38 Overview
nearme_tech
PRO
0
28
Rust 製のコードエディタ “Zed” を使ってみた
nearme_tech
PRO
0
170
実践で使えるtorchのテンソル演算
nearme_tech
PRO
0
20
ローカルLLMを⽤いてコード補完を⾏う VSCode拡張機能を作ってみた
nearme_tech
PRO
0
430
初めてのmarimo (ハンズオン)
nearme_tech
PRO
0
33
ローカルLLM
nearme_tech
PRO
0
54
LlamaIndex Workflow: Build Practical AI Agents Fast
nearme_tech
PRO
0
32
Box-Muller法
nearme_tech
PRO
1
54
Kiro触ってみた
nearme_tech
PRO
0
400
Featured
See All Featured
What's in a price? How to price your products and services
michaelherold
247
13k
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
2
420
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
57
How to build a perfect <img>
jonoalderson
1
4.9k
How to Align SEO within the Product Triangle To Get Buy-In & Support - #RIMC
aleyda
1
1.4k
Crafting Experiences
bethany
1
49
Unsuck your backbone
ammeep
671
58k
Accessibility Awareness
sabderemane
0
51
Typedesign – Prime Four
hannesfritz
42
2.9k
Testing 201, or: Great Expectations
jmmastey
46
8k
A Soul's Torment
seathinner
5
2.3k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.3k
Transcript
0 Rust 並列強化学習 2025-07-18 第126回NearMe技術勉強会 Takuma KAKINOUE
1 今回のテーマ • Rustで強化学習のDQNアルゴリズムを実装した ◦ https://zenn.dev/kakky_hacker/articles/652bd7f9a1e6c1 • 今回はDQNを並列化し、マルチエージェントで強化学習してみる
2 並列化のアーキテクチャ 環境サーバ_1 環境サーバ_n ・・・ n台 Agent_1 Agent_m ・・・ m個
リプレイバッファ gRPC通信 gRPC通信 1プロセス mスレッド
3 実装解説 • 左のコードのようにmemoryをMutexで包みつつTransitionBufferを定義 • 各agentにArc::cloneでTransitionBufferのインスタンスの参照を渡す ※TransitionBufferに経験をappendするとき、Q関数ネットを更新するために経験をサン プリングするときは、self.memory.lock()を⾏うことで排他制御する
4 実験概要 • OpenAI GymのLunarLander-v3で実験 ◦ https://gymnasium.farama.org/environments/box2d/lunar_lander/ ◦ DQN(single) vs
並列DQN(multi)で⽐較
5 実験結果 • 横軸:エピソード、縦軸:訓練中の報酬(10エピソード移動平均) ※ 並列DQN(multi)は9個並列で学習し、一番性能の良かったagentの軌跡をプロットした 並列化した方が安 定している!
6 パフォーマンス⽐較 • single(Python) ※参考 ◦ 実⾏時間:410 s ◦ 使⽤メモリ:93.3
MB • single(Rust) ◦ 実⾏時間:360 s ← Pythonと⽐べて約12%削減! ◦ 使⽤メモリ:79.7 MB ← Pythonと⽐べて約15%削減! • multi(Rust)※9並列 ◦ 実⾏時間:727 s ← singleの約2.0倍に留まった! ◦ 使⽤メモリ:- ※ 実行時間は始め200エピソードにかかった時間 今回の本筋と関係ないが、 一応Rustの優位性を実証 とはいえ、 9並列はtoo muchだったかも(最適な並 列数はありそう ..!)
7 まとめ • リプレイバッファを複数agentで共有するだけというシンプルなアプ ローチで、学習を安定化&効率化させることに成功! • Rustを使うことで、簡単に並列学習を実装できた!
8 今後の展望 • リプレイバッファからのサンプリングの⼯夫 • エージェント毎にハイパーパラメータを変化させて並列学習 • DQNだけでなくPPOやSACなどのアルゴリズムも並列化させて性能検証
9 おわりに • Starよろしくお願いします!⭐ ◦ https://github.com/kakky-hacker/reinforcex
10 実験⽅法詳細 • モデル ◦ 全結合ネットワーク ◦ ニューロン数:300個 ◦ 中間層:2層
◦ 活性化関数:relu • 最適化関数 ◦ Adam ◦ 学習率:3e-4 • DQNのハイパーパラメータ ◦ 更新間隔:8 step ◦ ターゲットネットワークの更新間隔:50 step ◦ ⽅策:ε decay ε-greedy(1.0→0.05, 10000 step) ◦ 割引率:0.99 • CPU → Intel Corei7-10870H, GPU→なし
11 Thank you