Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
新卒が考えた理想のDS新卒研修
Search
ninohira
November 09, 2018
1
770
新卒が考えた理想のDS新卒研修
ninohira
November 09, 2018
Tweet
Share
More Decks by ninohira
See All by ninohira
[ICML2021 論文読み会]Revisiting Rainbow: Promoting more Insightful and Inclusive Deep Reinforcement Learning Research
ninohira
0
1.4k
[論文紹介]Jukebox: A Generative Model for Music
ninohira
0
650
無駄分析を避ける為にデータサイエンティストに求められる能力
ninohira
3
12k
アーティストにとっての「愛」とは?~What is ”Love" for artist?~
ninohira
1
9.9k
Data Gateway Talk Vol.5運営資料
ninohira
1
480
今再びのRによる因果推論_Causal Interference by R_#japanr
ninohira
2
10k
因果推論の基礎とその罠 _Basic and Trap of Causal Inference_#白金鉱業
ninohira
5
12k
ドキュメンテーションのすヽめ_#MLbeginners
ninohira
1
680
Data Gateway Talk Vol.1運営資料
ninohira
1
3k
Featured
See All Featured
YesSQL, Process and Tooling at Scale
rocio
169
14k
For a Future-Friendly Web
brad_frost
175
9.4k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
38
1.9k
The Invisible Side of Design
smashingmag
298
50k
Reflections from 52 weeks, 52 projects
jeffersonlam
347
20k
Embracing the Ebb and Flow
colly
84
4.5k
Building Your Own Lightsaber
phodgson
103
6.1k
Testing 201, or: Great Expectations
jmmastey
40
7.1k
Code Review Best Practice
trishagee
65
17k
The Cult of Friendly URLs
andyhume
78
6.1k
Product Roadmaps are Hard
iamctodd
PRO
49
11k
Adopting Sorbet at Scale
ufuk
73
9.1k
Transcript
৽ଔ͕ߟ͑ͨཧͷDS৽ଔݚम ਔϊฏকਓ
৽ଔ͕ߟ͑ͨཧͷDS৽ଔݚम /9 2 ࢿྉެ։ ࢿྉʑconnpassʹެ։͠·͢ TwitterͰͷҙݟOKͰ͢ ໔ࣄ߲ ຊൃදݸਓͷݟղͰ͋Γɺ ॴଐ͢Δ৫ͷݟղͰ͋Γ·ͤΜ
৽ଔ͕ߟ͑ͨཧͷDS৽ଔݚम /9 ࣗݾհ 3 ਔϊฏɹকਓ Masato Ninohira ֶੜ ࣾձਓ झຯ
ڞಉݚڀઌͷσʔλ × ػցֶशΛ༻͍ͨఏҊ = ࣮࣭डୗੳ(※ύοέʔδ͚ͩͰͳ͘ɺʹ߹Θͤͨख๏ͷ։ൃ͕ϝΠϯ) ڧԽֶशҊ݅ Kaggle׆ಈਪਐ෦ͷ্ཱͪ͛ 2018৽ଔσʔλαΠΤϯςΟετ άϧϝαΠτɾ൪ΛݟΔ B’zϑΝϯ τϐοΫϞσϧw2vΛ༻͍ͨՎࢺͷੳ https://pira-nino.hatenablog.com/
৽ଔ͕ߟ͑ͨཧͷDS৽ଔݚम /9 ͏ͪͷձࣾ ৽ଔੳ OR த్ະܦݧ ࠾ͬͯΔΑʔͬͯํ ͓ฉ͖͠·ʔ͢ 4 ԿΛݚमͰΕ͍͍͔໎ͬͯΔΑʔͬͯํ
৽ଔ͕ߟ͑ͨཧͷDS৽ଔݚम /9 ͓ฉ͖͠·ʔ͢ 5 ͏ͪͷձࣾ ৽ଔσʔλαΠΤϯςΟετ࠾ͬͯΔΑʔͬͯํ ԿΛݚमͰΕ͍͍͔໎ͬͯΔΑʔͬͯํ σʔλαΠΤϯςΟετͷҭͰ ʮ͜Μͳ͜ͱͨ͠Β͍͍ͷͰʯ Λड͚ΔଆͷࢹͰ͠·͢ɻ
৽ଔ͕ߟ͑ͨཧͷDS৽ଔݚम /9 ظؒ × ϕʔεɾΦϓγϣϯ 6 ظ ɾ ظ ϕʔε
ɾ Φϓγϣϯ ※ϏδωεΑΓαΠΤϯεدΓͷ͠·͢ ͙͢ʹಋೖͰ͖ΔʮΦϓγϣϯʯΛϝΠϯʹ͠·͢
৽ଔ͕ߟ͑ͨཧͷDS৽ଔݚम /9 ظʢೖࣾʙ3ϲ݄ʣʢ͍ΘΏΔ৽ଔݚमʣ 7 ϕʔε ձࣾͷํʹ߹ΘͤΔ ɾ༷ʑͳۀछͰ߹ಉ ɾ࠷ڧͷΤϯδχΞʹ͢Δ ฐࣾͷྫ ɾӦۀಉߦ
ݱ࣮ͷϏδωεݫ͍͜͠ͱΛΔ ɾKaglle (2DAY) EDA -> ༧ଌ ͷྲྀΕΛΕΔʴӳޠʹ׳ΕΔ ɾ1DAY ࣾձՊݟֶ ̍ͷྲྀΕʴࡉ͔͍࡞ۀ༰ΛΕΔ ɾࣾυΩϡϝϯτΛݟΔ PJTͷਐߦաఔͳͲձࣾΛΕΔ Φϓγϣϯ ϝΠϯ
৽ଔ͕ߟ͑ͨཧͷDS৽ଔݚम /9 ظʢೖࣾ3ϲ݄ʙʣ 8 ϕʔε ࣮Ҋ݅Λܦݧ ɾ՝ਤॻ Ҋ͚݅ͩͰ౷ܭɾػցֶशͷࣝΛ͚ͭΔͷࠔ ɾΞτϓοτ࡞ͷྭ ɹ
ࣾWIKIɾษڧձɿू߹ ɹQIITAɾϒϩάɿݸਓɾձࣾͷϒϥϯσΟϯά Φϓγϣϯ ɾ࣮Ҋ݅ΛΔͷ͕Ұ൪ ɾಛʹϏδωεྗ͜͜Ͱͭ͘ ϝΠϯ
৽ଔ͕ߟ͑ͨཧͷDS৽ଔݚम /9 গ͠Ͱ͝ࢀߟʹͳΕ͍Ͱ͢ɻ 9