Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ドキュメンテーションのすヽめ_#MLbeginners
Search
ninohira
October 27, 2019
Technology
1
710
ドキュメンテーションのすヽめ_#MLbeginners
ML for Beginners! MeetUp登壇資料
#MLbeginners
ninohira
October 27, 2019
Tweet
Share
More Decks by ninohira
See All by ninohira
[ICML2021 論文読み会]Revisiting Rainbow: Promoting more Insightful and Inclusive Deep Reinforcement Learning Research
ninohira
0
1.4k
[論文紹介]Jukebox: A Generative Model for Music
ninohira
0
700
無駄分析を避ける為にデータサイエンティストに求められる能力
ninohira
3
12k
アーティストにとっての「愛」とは?~What is ”Love" for artist?~
ninohira
1
10k
Data Gateway Talk Vol.5運営資料
ninohira
1
510
今再びのRによる因果推論_Causal Interference by R_#japanr
ninohira
2
10k
因果推論の基礎とその罠 _Basic and Trap of Causal Inference_#白金鉱業
ninohira
5
13k
Data Gateway Talk Vol.1運営資料
ninohira
1
3.1k
新卒が考えた理想のDS新卒研修
ninohira
1
800
Other Decks in Technology
See All in Technology
Create a Rails8 responsive app with Gemini and RubyLLM
palladius
0
140
LinkX_GitHubを基点にした_AI時代のプロジェクトマネジメント.pdf
iotcomjpadmin
0
160
ObsidianをMCP連携させてみる
ttnyt8701
2
140
白金鉱業Meetup_Vol.19_PoCはデモで語れ!顧客の本音とインサイトを引き出すソリューション構築
brainpadpr
2
480
PHP開発者のためのSOLID原則再入門 #phpcon / PHP Conference Japan 2025
shogogg
0
240
菸酒生在 LINE Taiwan 的後端雙刀流
line_developers_tw
PRO
0
1.1k
Amazon Bedrockで実現する 新たな学習体験
kzkmaeda
1
390
Snowflake Summit 2025全体振り返り / Snowflake Summit 2025 Overall Review
mtpooh
2
200
Amazon S3標準/ S3 Tables/S3 Express One Zoneを使ったログ分析
shigeruoda
2
380
知識を整理して未来を作る 〜SKDとAI協業への助走〜
yosh1995
0
140
In Praise of "Normal" Engineers (LDX3)
charity
2
1.2k
25分で解説する「最小権限の原則」を実現するための AWS「ポリシー」大全 / 20250625-aws-summit-aws-policy
opelab
6
710
Featured
See All Featured
Building Adaptive Systems
keathley
43
2.6k
Writing Fast Ruby
sferik
628
61k
The Straight Up "How To Draw Better" Workshop
denniskardys
233
140k
Site-Speed That Sticks
csswizardry
10
650
How to train your dragon (web standard)
notwaldorf
92
6.1k
Adopting Sorbet at Scale
ufuk
77
9.4k
How STYLIGHT went responsive
nonsquared
100
5.6k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Unsuck your backbone
ammeep
671
58k
What's in a price? How to price your products and services
michaelherold
245
12k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.5k
Transcript
υΩϡϝϯςʔγϣϯͷ͢ʍΊ Recommend to Documentation
Recommend to Documentation 免責事項 / お願い - 本登壇は個⼈の⾒解であり、所属する組織の公式⾒解ではありません - 社会⼈2年⽬のビギナーなので優しい⽬で⾒てください
-「お気持ち」的な内容がメインになります - 受託分析データサイエンティスト視点なので、多少バイアスがあります - ツイッターにたくさんつぶやくと運営&⾃分が喜びますので、たくさんツイートしてください 2/14
Recommend to Documentation 質問 ドキュメンテーション⼤切だと感じたことある⽅︕︕ (深掘り) いつ / どうして そう思ったかを
考えました︖ 「誰か」に「何か」を伝えることって⼤切
Recommend to Documentation ⾃⼰紹介 学⽣ 早稲⽥⼤学 創造理⼯学研究科 経営システム⼯学専攻 共同研究先のマーケティングデータ ×
データサイエンス 仕事 データサイエンティスト @BrainPad 2018年新卒 強化学習 / NLP / 統計的因果推論 / 画像異常検知 趣味 仁ノ平 将⼈ Masato Ninohira (@nino_pira) Data Gateway Talk 主催 B’zファン(⾳楽×データ分析のイベント企画now) ブログ︓データサイエンティスト⾒習いの⽇常 フットサル 4/14
Recommend to Documentation ⽬次 - Why Documentation? - ドキュメントの分類 -
コード / 分析レポート - まとめ 5/14
Recommend to Documentation ⾃分の記憶の共有 = 不可能 Why Documentation︖ Impossible to
SHARE Brain 「誰か」に「何か」を伝えたい Idea ケースに応じたドキュメンテーション Want to SHARE Idea SHARE by Document SHARE 6/14
Recommend to Documentation ドキュメントの分類 ※MECEではないです。作為的に⽊を切っています ※「メール / 議事録」も考えましたが、分析内容を 直接書くことは稀だと思いましたのでスコープ外 Who
- 分析チーム - 意思決定者 - コンピュータ - 分析結果 / next アクション - 意思決定者への レポートに必要な素材選定 - ⾃分のコードの確認 - 分析の結果を正しく伝え、意思決定のサポート - 回るコード / 早いコード - 分析レポート - コード - 分析レポート What Document - コード 「誰」に「何を伝えたいか」の構造化が良いドキュメント化へのポイント 7/14
Recommend to Documentation コード コンピュータ & ⼈間に読みやすいコード 計算速度 冗⻑なコードの回避 例︓
組み込み関数のsumを使う 可読性の⾼い実装 - 明瞭なディレクトリ構成 - コーディング規約 /適切なコメント - 明瞭なプルリク 8/14
Recommend to Documentation 参考︓ ディレクトリ構造のテンプレ ⾃分はこれに⾃分専⽤の 開発環境特化素材を加えてる (例︓Docker) 9/14
Recommend to Documentation 分析レポート 前提 1. 分析には「⽬的」があり「概要」/ 「結果」があり「Next Action」が絶対にある 2.
対象者が求めているレベル感に合わす 意思決定者 詳しく知りたい 結果だけ知りたい 分析メンバー 社内wiki / 分析レポート 詳しく知らせる必要がある スライド 作成モデルをシステム化することでxx万円の売り上げ向上 コスト︓xxx Income︓xxx ROI︓xxx (期間︓zzxxx~xxxx) 作成モデルをシステム化することでxx万円の売り上げ向上 モデルの精度 学習︓xxx テスト︓xxx 分析⽬的︓xxxx 概要︓xxxx 結果︓xxxx Next Action︓xxxx 詳細︓xxx ※綺麗なスライドの作り⽅は世の中に 良い本がたくさんあるのでそちらで学んで頂ければと思います Who Level Doc ロジックツリー ここがxx%up 結局、分析結果をステークホルダーに伝えられないとその分析に価値はない 10/14
Recommend to Documentation 参考︓コンフルエンスを⽤いた分析レポート作成 オンラインで共有 = 情報の共有の閾値が低 (全ての実験結果をコンフルに記載) 11/14
Recommend to Documentation 参考︓分析レポート以外の記事もたくさん書いてます 12/14
Recommend to Documentation 参考︓どう鍛えるの︖ 意識して経験するしかないと思っています。。。 Do Best Every Time ※むしろ良い⽅法をご存知の⽅教えてください、、、
13/14
Recommend to Documentation まとめ - 情報の伝達⼿段としてドキュメンテーションは有効 - 「誰」に「何を」伝えたいかの「構造化」を意識したドキュメント化 14/14
Recommend to Documentation 参考⽂献 - はじめてのNoteと、ドキュメンテーションについて (本登壇はこの資料に超影響を受けてます) - 1分で話せ 世界のトップが絶賛した⼤事なことだけシンプルに伝える技術
- イシューからはじめよ 知的⽣産の「シンプルな本質」 - なぜあなたのPull Requestは読まれないのか - Cookiecutter Data Science