Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Power of Ensembles

Avatar for Nischal Nischal
September 27, 2015

Power of Ensembles

Avatar for Nischal

Nischal

September 27, 2015
Tweet

More Decks by Nischal

Other Decks in Programming

Transcript

  1. How  you  win  ML  competitions:  “  you  take  other  people’s

     work     and  ensemble  them  together”    -­‐  Vitaly  Kuznetsov  NIPS  2014     -­‐  Bargava  Subramanian  (@bargava)   -­‐  Nischal  HP  (@nischalhp)      
  2. Increased  Accuracy   Robustness   Efficiency   Parallelization   Wider

     search  of   solution  space   Reduces  over   fitting  
  3. Model  human   readability  is  not   great   Time/Effort

     required  to  build   complex  ensemble  models  might  not   be  directly  proportional  to  the   accuracy    
  4. {   Building  Base  Models   Model  Aggregation   Different

     Training  Sets   Different  Algorithms   Different  Parameter  Setups   Algorithm  Randomization   Feature  Sampling   Voting  /  Averaging   Weighted  Voting   Using  as  attributes   Stacking   Bagging  
  5. Input  Data   Model  1   Model  2   Model

     3   Model  4   Combine  the   models  using   some  logic   Final   Output  
  6. Random  Forest   Gradient   Boosting   Logistic   Regression

      Ensemble   Output   1   0   1   1   0   0   1   0   1   1   0   1   1   1   1   1   0   0   0   0   70%   70%   70%   90%  
  7. Input   Data   Model  1   Model  2  

    Model  3   Model  4   Combine  the   models  using   some  logic   Final   Output   pre     processing     feature    extraction     model     [   [   - Pipeline identify   the  models   Assign  weights   to  models   [   [   - Hyperopt finding  randomized  hyper  parameters  for  models   [   [   - RandomizedSearchCV [   [   - joblib ( running models in parallel ) sklearn   keras   xgboost   [   [   - libraries used to build base models