Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
都市をデータで見るってこういうこと PLATEAU属性情報入門
Search
nokonoko1203
June 24, 2025
Programming
1
740
都市をデータで見るってこういうこと PLATEAU属性情報入門
nokonoko1203
June 24, 2025
Tweet
Share
More Decks by nokonoko1203
See All by nokonoko1203
GISエンジニアから見たLINKSデータ
nokonoko1203
0
190
釣り地図SNSにおける有料機能の実装
nokonoko1203
0
250
EMがLLMで仕様書駆動開発したらすごい捗った
nokonoko1203
1
80
日本全国・都市3D化プロジェクト「PLATEAU」とデータ変換OSS「PLATEAU GIS Converter」の公開
nokonoko1203
4
6.5k
Hono・Prisma・AWSでGeoなAPI開発
nokonoko1203
5
1.2k
日本全国の都市3D化プロジェクト「PLATEAU」の紹介
nokonoko1203
0
160
PLATEAU Hands-on 11 PLATEAUデータの高さや位置合わせについて理解する
nokonoko1203
0
770
20240626_PLATEAU_AWARD説明会
nokonoko1203
0
440
Rustで「プリズモイダル法」を利用して「土量計算」をガチでやる
nokonoko1203
1
940
Other Decks in Programming
See All in Programming
JETLS.jl ─ A New Language Server for Julia
abap34
2
480
Patterns of Patterns
denyspoltorak
0
640
Data-Centric Kaggle
isax1015
2
580
20251212 AI 時代的 Legacy Code 營救術 2025 WebConf
mouson
0
250
AI Agent Tool のためのバックエンドアーキテクチャを考える #encraft
izumin5210
6
1.7k
Grafana:建立系統全知視角的捷徑
blueswen
0
290
SQL Server 2025 LT
odashinsuke
0
160
DevFest Android in Korea 2025 - 개발자 커뮤니티를 통해 얻는 가치
wisemuji
0
180
LLM Observabilityによる 対話型音声AIアプリケーションの安定運用
gekko0114
2
360
生成AI時代を勝ち抜くエンジニア組織マネジメント
coconala_engineer
0
40k
rack-attack gemによるリクエスト制限の失敗と学び
pndcat
0
190
[AtCoder Conference 2025] LLMを使った業務AHCの上⼿な解き⽅
terryu16
6
1.1k
Featured
See All Featured
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
54
49k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
48
How to build an LLM SEO readiness audit: a practical framework
nmsamuel
1
610
Six Lessons from altMBA
skipperchong
29
4.1k
What's in a price? How to price your products and services
michaelherold
246
13k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.3k
Ecommerce SEO: The Keys for Success Now & Beyond - #SERPConf2024
aleyda
1
1.8k
The Mindset for Success: Future Career Progression
greggifford
PRO
0
220
Visual Storytelling: How to be a Superhuman Communicator
reverentgeek
2
410
Transcript
都市を”データで見る”って こういうこと PLATEAU属性情報入門 株式会社MIERUNE 西尾 悟(@nokonoko_1203)
西尾 悟(@nokonoko_1203) 2児の父をやりながら株式会社MIERUNEで GIS(地理空間情報)とWeb開発を行う、 Engineering Managerです! Python / Rust /
GIS / 点群 / 3D Tiles / AWS / WebGL / PLATEAU ADVOCATE / Cesium Certified Developer
None
PLATEAU ADVOCATEとして、PLATEAUの社会実装に貢献
Cesiumに関連する優れた開発スキルを証明し、Cesium Certified Developerに認定
Interface 2025年5月号への寄稿
None
PLATEAUデータは綺麗でカッコいい https://www.mlit.go.jp/plateau/file/libraries/doc/plateau_doc_0000_ver05.pdf
でもカッコいいだけじゃない! https://plateauview.mlit.go.jp/
ただの3Dデータではなく、現実世界の情報を反映させた「地理空間情報」 https://plateauview.mlit.go.jp/
PLATEAUデータの有用性
3D都市モデルを活用した延焼シミュレーターの高度化事業 ・シミュレーションの高度化: PLATEAUの地形(標高)や建物の高さ・構造種別・建築年と いった詳細な属性情報を活用し、従来の延焼シミュレーション の精度が向上した。 ・現実的な延焼予測の実現: 市街地と中山間地をシームレスにつなぎ、これまで困難だった 傾斜地なども考慮した、より現実的な延焼予測を可能になっ た。 ・具体的な検証と成果:
標高データや「地面」を模した地物の有無による影響を検証 し、傾斜地での延焼速度が変化することを確認するなど、より 現実に近い挙動を再現できることを実証された。 https://www.mlit.go.jp/plateau/use-case/uc23-26/
太陽光発電のポテンシャル推計及び反射シミュレーション v3.0 ・発電ポテンシャル推計・適地判定 月毎の日照時間や屋根面積・1パネルあたりの発電量などをイン プットとして閾値によって色分けする機能や、災害リスク・景 観保全区域・建築構造・洪水浸水深・大切加重などの情報をイ ンプットとしてリスク度合いを建物ごとに付与する機能が実装 された。 ・ポテンシャル推計の精度検証: NEDOの日射量データベースや実際の発電量との比較検証が実
施された。その結果、推計値は実測値と近似しており、行政の 施策検討に利用できる精度が実証された。 ・実用性と新たな活用可能性: 自治体職員による試用で、住民説明などの合意形成に有用であ ることが確認された。さらに、災害時の非常用電源の配置検討 にも有効であるなど、当初の想定を超えた活用可能性が示され た。 https://www.mlit.go.jp/plateau/use-case/uc24-15/
ユースケースは大量にある https://www.mlit.go.jp/plateau/use-case/
PLATEAU VIEWで属性情報に詳しくなる https://plateauview.mlit.go.jp/
都市の情報に詳しくなる https://plateauview.mlit.go.jp/
ダウンロードはとても簡単 https://plateauview.mlit.go.jp/
指定した箇所のデータのみが取得できる
今回のメインはこのファイルの話
地域メッシュ(1次メッシュ) https://mesh-jp.mierune.dev/
地域メッシュ(3次メッシュ・メッシュコード: 53394611) https://mesh-jp.mierune.dev/?code=53394611
53394611_bldg_6697_op.gml?なんだか難しそう…しかも2,765,000行…
None
よくみるとそんなに難しくない!(めんどくさいだけ) https://www.mlit.go.jp/plateaudocument01-04/
データの意味は全て「標準製品仕様書」に書いている https://www.mlit.go.jp/plateaudocument
だんだん読めるようになってくる…はず… ・データ作成日:2024-03-15 ・延べ面積換算係数:1.00 ・都市計画の地区名:日本橋・東京駅前地区 ・建築物の種類を表すコード:3001 ・建築物の用途を表すコード:413 ・計測された建物の高さ:8m ・地上の階数:2階 ・地下の階数:0階 ・緯度、経度、高さの座標:
35.68238801376454 139.77169191520449 0 ...
が、読む必要はない(PLATEAU GIS Converter) https://github.com/MIERUNE/plateau-gis-converter
チュートリアルもある https://www.mlit.go.jp/plateau/learning/tpc30/ https://www.mlit.go.jp/plateau/learning/tpc31/
QGISで属性を見る・仕様書と見比べる
どれを選べば良い?
とりあえず「NoGeometry」ではないやつでOK! 建物本体 河川災害のリスク情報
PLATEAUデータは入れ子構造 id: bldg_b5b4d7d4-a078-4ca9-8ec3-87e5bdc63cde 名称: "グラントウキョウ ノースタワー" ・「隅田川・新河岸川流域」の災害リスクは「0.5m未満」 ・「神田川流域」での災害リスクも「0.5m未満」 「建物情報」 id
建物名 利用区分 面積 ... 「河川Aでの災害リスク」 建物id 浸水深 浸水ランク 規模 ... 「河川Bでの災害リスク」 建物id 浸水深 浸水ランク 規模 ...
ただ、表形式では表現できない
建物IDで「関連付け」を行う 「建物情報」 id 建物名 利用区分 面積 ... 「河川Aでの災害リスク」 建物id 浸水深
浸水ランク 規模 ... 「河川Bでの災害リスク」 建物id 浸水深 浸水ランク 規模 ...
「LOD」が高いと複雑 「窓・屋根・扉・煙突…」ごとの「名称・材質・形状…」など…
「建物」の「属性」 https://www.mlit.go.jp/plateaudocument/toc4/toc4_02/toc4_02_03/toc4_02_03_01/_bldgbuilding/
「コードリスト」 https://www.mlit.go.jp/plateaudocument/toc4/toc4_02/toc4_02_04/toc4_02_04_01/_building_usage_xml/
PLATEAU GIS Converterでは「コードリスト」は自動で日本語に変換される
「属性情報」で困ったら「標準製品仕様書」を調べて、「QGIS」で見てみよう!
都市をデータで見ていこう!