Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
マルウェアを機械学習する前に
Search
Yuma Kurogome
February 13, 2016
Programming
3
1.6k
マルウェアを機械学習する前に
Kaggle - Malware Classification Challenge勉強会 connpass.com/event/25007/ 発表資料
Yuma Kurogome
February 13, 2016
Tweet
Share
More Decks by Yuma Kurogome
See All by Yuma Kurogome
The Art of De-obfuscation
ntddk
16
27k
死にゆくアンチウイルスへの祈り
ntddk
55
39k
Windows Subsystem for Linux Internals
ntddk
10
3k
なぜマルウェア解析は自動化できないのか
ntddk
6
4.2k
Linear Obfuscation to Drive angr Angry
ntddk
4
850
CAPTCHAとボットの共進化
ntddk
2
1.2k
Peeling Onions
ntddk
7
3.7k
仮想化技術を用いたマルウェア解析
ntddk
8
27k
An Introduction to Drawbridge(ja)
ntddk
11
3.4k
Other Decks in Programming
See All in Programming
中級グラフィックス入門~効率的なメッシュレット描画~
projectasura
4
2.4k
CEDEC 2025 『ゲームにおけるリアルタイム通信への QUIC導入事例の紹介』
segadevtech
2
740
DatadogのArchived LogsをSnowflakeで高速に検索する方法(Archive Searchでオワコンにならないことを祈って) / How to search Datadog Archived Logs quickly with Snowflake (hoping Datadog Archive Search doesn’t make this obsolete)
civitaspo
0
110
[Codecon - 2025] Como não odiar seus testes
camilacampos
0
100
SwiftでMCPサーバーを作ろう!
giginet
PRO
2
220
NEWT Backend Evolution
xpromx
1
170
ZeroETLで始めるDynamoDBとS3の連携
afooooil
0
150
Vibe coding コードレビュー
kinopeee
0
400
AI Ramen Fight
yusukebe
0
120
Gemini CLIの"強み"を知る! Gemini CLIとClaude Codeを比較してみた!
kotahisafuru
3
920
なぜあなたのオブザーバビリティ導入は頓挫するのか
ryota_hnk
5
560
Terraform やるなら公式スタイルガイドを読もう 〜重要項目 10選〜
hiyanger
11
2.8k
Featured
See All Featured
Adopting Sorbet at Scale
ufuk
77
9.5k
How to train your dragon (web standard)
notwaldorf
96
6.1k
Into the Great Unknown - MozCon
thekraken
40
2k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
182
54k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
The Invisible Side of Design
smashingmag
301
51k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
Producing Creativity
orderedlist
PRO
346
40k
Being A Developer After 40
akosma
90
590k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Transcript
@ntddk Kaggle - Malware Classification Challenge 2016.02.13 1
• http://ntddk.github.io/ • 2
3
4
Kaggle 5 https://www.kaggle.com/
6 • • • ※ David H. Wolpert, The Supervised
Learning No-Free-Lunch Theorems, In Proc. 6th Online World Conference on Soft Computing in Industrial Applications, pp.25-42, 2001.
7 • • • ※ David H. Wolpert, The Supervised
Learning No-Free-Lunch Theorems, In Proc. 6th Online World Conference on Soft Computing in Industrial Applications, pp.25-42, 2001.
8 There ain't no such thing as a free lunch
http://www.amazon.co.jp/dp/4150117489 http://www.amazon.co.jp/dp/B00GJMUKMG/ http://www.amazon.co.jp/dp/4150312133/
9 There ain't no such thing as a free lunch
http://www.amazon.co.jp/dp/4150117489 http://www.amazon.co.jp/dp/B00GJMUKMG/ http://www.amazon.co.jp/dp/4150312133/
10 http://blog.kaggle.com/
11 x η g a b c x …
12 x η g a b c x …
13 • • A B Satoshi Watanabe, Knowing and Guessing
― Quantitative Study of Inference and Information John Wiley & Sons, 1969.
14 • • A B Satoshi Watanabe, Knowing and Guessing
― Quantitative Study of Inference and Information John Wiley & Sons, 1969.
15 • • • •
16 https://www.av-test.org/en/statistics/malware/
17 http://www.mcafee.com/jp/resources/reports/rp-quarterly-threat-q2-2015.pdf
18 http://www.mcafee.com/jp/resources/reports/rp-quarterly-threat-q2-2015.pdf http://www.mcafee.com/jp/resources/reports/rp-threats-predictions-2016.pdf
19 • KERNEL32!VirtualAllocStub • KERNEL32!VirtualProtectStub • KERNEL32!OpenProcessStub • KERNEL32!OpenThreadStub •
…
20 CSEC: MWS: http://www.iwsec.org/mws/2015/about.html
21 https://www.kaggle.com/c/malware-classification/data 16
22 • https://virusshare.com/ • http://malware-traffic-analysis.net/
23 • • • •
24 • • • • API PE
25 https://github.com/corkami/
26 • • • • • •
27 #include <windows.h> typedef int (WINAPI *LPFNMESSAGEBOXW)(HWND, LPCWSTR, LPCWSTR, UINT);
int main() { HMODULE hmod = LoadLibrary(TEXT("user32.dll")); LPFNMESSAGEBOXW lpfnMessageBoxW = (LPFNMESSAGEBOXW)GetProcAddress(hmod, "MessageBoxW"); lpfnMessageBoxW(NULL, L"Hello, world!", L"Test", MB_OK); FreeLibrary(hmod); return 0; } •
28 { "category": "registry", "status": true, "return": "0x00000000", "timestamp": "2015-05-24
02:46:50,773", "thread_id": "3220", "repeated": 0, "api": "NtOpenKey", "arguments": [ { "name": "DesiredAccess", "value": "33554432" }, { "name": "KeyHandle", "value": "0x00000154" }, { "name": "ObjectAttributes", "value": "¥¥REGISTRY¥¥USER¥¥S-1-5-21-916742657-1382504153-4155998892-1001" } ], "id": 83 },
29 • • • ※ David H. Wolpert, The Supervised
Learning No-Free-Lunch Theorems, In Proc. 6th Online World Conference on Soft Computing in Industrial Applications, pp.25-42, 2001.
30 • AdaBoost, Gradient Boosting • Kaggle
DAF 31 Mohammad M. Masud, Latifur Khan, Bhavani Thuraisingham, A
scalable multi-level feature extraction technique to detect malicious executables, Information Systems Frontiers, Vol.10, Issue.1, pp.33-45, 2008. 16 DAF: Derived Assembly Features BFS: Binary N-gram Features