Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CAPTCHAとボットの共進化
Search
Yuma Kurogome
April 26, 2016
Technology
2
1.1k
CAPTCHAとボットの共進化
http://connpass.com/event/29969/
LT資料
Yuma Kurogome
April 26, 2016
Tweet
Share
More Decks by Yuma Kurogome
See All by Yuma Kurogome
The Art of De-obfuscation
ntddk
16
27k
死にゆくアンチウイルスへの祈り
ntddk
55
39k
Windows Subsystem for Linux Internals
ntddk
10
3k
なぜマルウェア解析は自動化できないのか
ntddk
6
4.2k
Linear Obfuscation to Drive angr Angry
ntddk
4
840
マルウェアを機械学習する前に
ntddk
3
1.6k
Peeling Onions
ntddk
7
3.6k
仮想化技術を用いたマルウェア解析
ntddk
8
27k
An Introduction to Drawbridge(ja)
ntddk
11
3.3k
Other Decks in Technology
See All in Technology
OCI見積もり入門セミナー
oracle4engineer
PRO
0
120
非エンジニアにも伝えるメールセキュリティ / Email security for non-engineers
ykanoh
13
4k
一人QA時代が終わり、 QAチームが立ち上がった話
ma_cho29
0
290
AWS CDK コントリビュート はじめの一歩
yendoooo
1
120
PostgreSQL Unconference #52 pg_tde
nori_shinoda
1
230
Restarting_SRE_Road_to_SRENext_.pdf
_awache
0
170
Javaの新しめの機能を知ったかぶれるようになる話 #kanjava
irof
3
4.9k
Amazon GuardDuty Malware Protection for Amazon S3を使おう
ryder472
2
110
日本MySQLユーザ会ができるまで / making MyNA
tmtms
1
370
Agile TPIを活用した品質改善事例
tomasagi
0
350
Keynote - KCD Brazil - Platform Engineering on K8s (portuguese)
salaboy
0
130
チームの性質によって変わる ADR との向き合い方と、生成 AI 時代のこれから / How to deal with ADR depends on the characteristics of the team
mh4gf
4
340
Featured
See All Featured
Code Reviewing Like a Champion
maltzj
522
39k
Speed Design
sergeychernyshev
28
870
RailsConf 2023
tenderlove
29
1k
Testing 201, or: Great Expectations
jmmastey
42
7.4k
Java REST API Framework Comparison - PWX 2021
mraible
29
8.5k
The Pragmatic Product Professional
lauravandoore
33
6.5k
How STYLIGHT went responsive
nonsquared
99
5.4k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
102
18k
Faster Mobile Websites
deanohume
306
31k
StorybookのUI Testing Handbookを読んだ
zakiyama
28
5.6k
Optimizing for Happiness
mojombo
377
70k
The Invisible Side of Design
smashingmag
299
50k
Transcript
None
• •
None
•
None
• •
None
None
None
def __init__(self, input_channel, output_channel, filter_height, filter_width, mid_units, n_units, n_label): super(CNN,
self).__init__( conv1 = L.Convolution2D(input_channel, output_channel, (filter_height, filter_width)), l1 = L.Linear(mid_units, n_units), l2 = L.Linear(n_units, n_label), ) • • • • • • •