Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The state of NLP in production 🥽
Search
Abdur-Rahmaan Janhangeer
August 27, 2023
Programming
0
160
The state of NLP in production 🥽
NLP in production vs real life
Abdur-Rahmaan Janhangeer
August 27, 2023
Tweet
Share
More Decks by Abdur-Rahmaan Janhangeer
See All by Abdur-Rahmaan Janhangeer
Building AI Agents with Python: A Deep Dive
osdotsystem
0
49
Extending Flask using the Flask Plugins API
osdotsystem
0
120
PEPs that hit the front page
osdotsystem
0
100
libSQL: Taking Sqlite To The Moon
osdotsystem
0
220
Boosting Python With Rust 🚀
osdotsystem
0
220
Flet: Flutter in Python
osdotsystem
0
480
SQLite Internals: How The World's Most Used Database Works
osdotsystem
2
3.7k
Fast Flask Dev For Big Codebases
osdotsystem
0
240
Python Bytecode or How Python Operates
osdotsystem
0
320
Other Decks in Programming
See All in Programming
0→1 フロントエンド開発 Tips🚀 #レバテックMeetup
bengo4com
0
350
Findy AI+の開発、運用におけるMCP活用事例
starfish719
0
1.7k
Tinkerbellから学ぶ、Podで DHCPをリッスンする手法
tomokon
0
140
Canon EOS R50 V と R5 Mark II 購入でみえてきた最近のデジイチ VR180 事情、そして VR180 静止画に活路を見出すまで
karad
0
130
リリース時」テストから「デイリー実行」へ!開発マネージャが取り組んだ、レガシー自動テストのモダン化戦略
goataka
0
140
宅宅自以為的浪漫:跟 AI 一起為自己辦的研討會寫一個售票系統
eddie
0
530
クラウドに依存しないS3を使った開発術
simesaba80
0
150
Denoのセキュリティに関する仕組みの紹介 (toranoana.deno #23)
uki00a
0
150
AIコーディングエージェント(Gemini)
kondai24
0
270
AIエージェントの設計で注意するべきポイント6選
har1101
5
2.1k
AIの誤りが許されない業務システムにおいて“信頼されるAI” を目指す / building-trusted-ai-systems
yuya4
6
3.9k
DevFest Android in Korea 2025 - 개발자 커뮤니티를 통해 얻는 가치
wisemuji
0
170
Featured
See All Featured
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
27
WCS-LA-2024
lcolladotor
0
390
技術選定の審美眼(2025年版) / Understanding the Spiral of Technologies 2025 edition
twada
PRO
115
91k
Code Review Best Practice
trishagee
74
19k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
SERP Conf. Vienna - Web Accessibility: Optimizing for Inclusivity and SEO
sarafernandez
1
1.3k
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
170
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
160
From π to Pie charts
rasagy
0
91
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Max Prin - Stacking Signals: How International SEO Comes Together (And Falls Apart)
techseoconnect
PRO
0
49
Into the Great Unknown - MozCon
thekraken
40
2.2k
Transcript
The state of NLP in production
None
Python Mauritius Usergroup site fb linkedin mailing list 3
url pymug.com site 4
About me compileralchemy.com 5
slides 6
The state of NLP in production 7
Hardest part of a real-world project 8
? 9
Is it cooking up an awesome model? 10
No, the world is more complex than this 11
Elements of an NLP project 12
NLP project gather data clean store train use model retrain
model 13
gather data 14
Toy project use curated data set quick extraction 15
Real project a lot of data needed data corresponds to
business case. data probably does not exist speed of data gathering find ingenious / better ways of getting data automate collection 16
clean/preprocess data 17
Toy project use an existing parser / curator e.g. NLTK
existing options 18
Real project use a parser intended for it, several custom
steps parallel processing of data 19
store data 20
Toy project laptop 21
Real project cloud database hot / cold data TTL 22
training 23
Toy project use laptop / external GPU 24
Real project on cloud training on cloud knowledge cross-cloud skills
fault tolerance 25
use model 26
Toy project local website / code 27
Real project continuation of pipeline web service architecture devops /
deploy 28
retraining 29
Toy project euhh this even exists???? 30
Real project learn cloud offerings for continuous learning ways to
retrain / fine tune 31
It's more than serving a model 32
Operation model 33
[ pipeline ] data collection --- process --- train -<-
| | --------------------------- model ^ | | | | --->--- V web service [pod] [pod] --- happy user | -> users service [pod] [pod] | -> db service [pod] 34
skills chart 35
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- --------------- --------------- | | | | | backend | | data eng | | | | | --------------- --------------- 36
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- web service deploy --------------- --------------- | | | | | ml | | data eng | | | | | --------------- --------------- models pipelining 37
code blueprint [ architecture repos ] [ pipeline repos ]
[ ml repos ] [ backend repos ] 38
Tools 39
Pandas Good queries Much resources Read SQL 40
Dask Good for it's purpose: Parallelize tasks Poor docs 41
Polars Awesome parallelizations Great docs 42
NLTK use spacy if possible 43
Notebooks great for cloud used in production on the cloud
44
Advice to research / scientists folks keep everything clean people
will come after you always in hurry / messy / i'll clean it later mood good practices? is this phrase in the korean dictionary? 45
General advices have great docs good onboarding have great standards
46
Keep learning! 47