Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The state of NLP in production 🥽
Search
Abdur-Rahmaan Janhangeer
August 27, 2023
Programming
0
80
The state of NLP in production 🥽
NLP in production vs real life
Abdur-Rahmaan Janhangeer
August 27, 2023
Tweet
Share
More Decks by Abdur-Rahmaan Janhangeer
See All by Abdur-Rahmaan Janhangeer
Extending Flask using the Flask Plugins API
osdotsystem
0
44
PEPs that hit the front page
osdotsystem
0
45
libSQL: Taking Sqlite To The Moon
osdotsystem
0
130
Boosting Python With Rust 🚀
osdotsystem
0
140
Flet: Flutter in Python
osdotsystem
0
320
SQLite Internals: How The World's Most Used Database Works
osdotsystem
2
3.6k
Fast Flask Dev For Big Codebases
osdotsystem
0
170
Python Bytecode or How Python Operates
osdotsystem
0
240
How To OpenSource
osdotsystem
0
130
Other Decks in Programming
See All in Programming
From Translations to Multi Dimension Entities
alexanderschranz
2
130
「とりあえず動く」コードはよい、「読みやすい」コードはもっとよい / Code that 'just works' is good, but code that is 'readable' is even better.
mkmk884
3
440
開発者とQAの越境で自動テストが増える開発プロセスを実現する
92thunder
1
190
Zoneless Testing
rainerhahnekamp
0
120
KubeCon + CloudNativeCon NA 2024 Overviewat Kubernetes Meetup Tokyo #68 / amsy810_k8sjp68
masayaaoyama
0
250
これが俺の”自分戦略” プロセスを楽しんでいこう! - Developers CAREER Boost 2024
niftycorp
PRO
0
190
CQRS+ES の力を使って効果を感じる / Feel the effects of using the power of CQRS+ES
seike460
PRO
0
130
テストコードのガイドライン 〜作成から運用まで〜
riku929hr
5
610
短期間での新規プロダクト開発における「コスパの良い」Goのテスト戦略」 / kamakura.go
n3xem
2
170
ドメインイベント増えすぎ問題
h0r15h0
2
340
クリエイティブコーディングとRuby学習 / Creative Coding and Learning Ruby
chobishiba
0
3.9k
フロントエンドのディレクトリ構成どうしてる? Feature-Sliced Design 導入体験談
osakatechlab
8
4.1k
Featured
See All Featured
Embracing the Ebb and Flow
colly
84
4.5k
RailsConf 2023
tenderlove
29
940
How To Stay Up To Date on Web Technology
chriscoyier
789
250k
The Power of CSS Pseudo Elements
geoffreycrofte
73
5.4k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
10
810
Fireside Chat
paigeccino
34
3.1k
Building an army of robots
kneath
302
44k
Designing for Performance
lara
604
68k
Measuring & Analyzing Core Web Vitals
bluesmoon
4
170
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
1.2k
Unsuck your backbone
ammeep
669
57k
Building Flexible Design Systems
yeseniaperezcruz
327
38k
Transcript
The state of NLP in production
None
Python Mauritius Usergroup site fb linkedin mailing list 3
url pymug.com site 4
About me compileralchemy.com 5
slides 6
The state of NLP in production 7
Hardest part of a real-world project 8
? 9
Is it cooking up an awesome model? 10
No, the world is more complex than this 11
Elements of an NLP project 12
NLP project gather data clean store train use model retrain
model 13
gather data 14
Toy project use curated data set quick extraction 15
Real project a lot of data needed data corresponds to
business case. data probably does not exist speed of data gathering find ingenious / better ways of getting data automate collection 16
clean/preprocess data 17
Toy project use an existing parser / curator e.g. NLTK
existing options 18
Real project use a parser intended for it, several custom
steps parallel processing of data 19
store data 20
Toy project laptop 21
Real project cloud database hot / cold data TTL 22
training 23
Toy project use laptop / external GPU 24
Real project on cloud training on cloud knowledge cross-cloud skills
fault tolerance 25
use model 26
Toy project local website / code 27
Real project continuation of pipeline web service architecture devops /
deploy 28
retraining 29
Toy project euhh this even exists???? 30
Real project learn cloud offerings for continuous learning ways to
retrain / fine tune 31
It's more than serving a model 32
Operation model 33
[ pipeline ] data collection --- process --- train -<-
| | --------------------------- model ^ | | | | --->--- V web service [pod] [pod] --- happy user | -> users service [pod] [pod] | -> db service [pod] 34
skills chart 35
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- --------------- --------------- | | | | | backend | | data eng | | | | | --------------- --------------- 36
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- web service deploy --------------- --------------- | | | | | ml | | data eng | | | | | --------------- --------------- models pipelining 37
code blueprint [ architecture repos ] [ pipeline repos ]
[ ml repos ] [ backend repos ] 38
Tools 39
Pandas Good queries Much resources Read SQL 40
Dask Good for it's purpose: Parallelize tasks Poor docs 41
Polars Awesome parallelizations Great docs 42
NLTK use spacy if possible 43
Notebooks great for cloud used in production on the cloud
44
Advice to research / scientists folks keep everything clean people
will come after you always in hurry / messy / i'll clean it later mood good practices? is this phrase in the korean dictionary? 45
General advices have great docs good onboarding have great standards
46
Keep learning! 47