Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The state of NLP in production 🥽
Search
Abdur-Rahmaan Janhangeer
August 27, 2023
Programming
0
100
The state of NLP in production 🥽
NLP in production vs real life
Abdur-Rahmaan Janhangeer
August 27, 2023
Tweet
Share
More Decks by Abdur-Rahmaan Janhangeer
See All by Abdur-Rahmaan Janhangeer
Building AI Agents with Python: A Deep Dive
osdotsystem
0
9
Extending Flask using the Flask Plugins API
osdotsystem
0
73
PEPs that hit the front page
osdotsystem
0
65
libSQL: Taking Sqlite To The Moon
osdotsystem
0
170
Boosting Python With Rust 🚀
osdotsystem
0
170
Flet: Flutter in Python
osdotsystem
0
370
SQLite Internals: How The World's Most Used Database Works
osdotsystem
2
3.7k
Fast Flask Dev For Big Codebases
osdotsystem
0
190
Python Bytecode or How Python Operates
osdotsystem
0
260
Other Decks in Programming
See All in Programming
OUPC2024 Day 1 解説
kowerkoint
0
400
JavaOne 2025: Advancing Java Profiling
jbachorik
1
320
PHPでお金を扱う時、終わりのない 謎の1円調査の旅にでなくて済む方法
nakka
3
1.3k
フロントエンドテストの育て方
quramy
9
2.6k
AtCoder Heuristic First-step Vol.1 講義スライド(山登り法・焼きなまし法編)
takumi152
3
990
家族・子育て重視/沖縄在住を維持しながらエンジニアとしてのキャリアをどのように育てていくか?
ug
0
240
Let's Take a Peek at PHP Parser 5.x!
inouehi
0
100
아직도 SOLID 를 '글'로만 알고 계신가요?
sh1mj1
0
360
リアクティブシステムの変遷から理解するalien-signals / Learning alien-signals from the evolution of reactive systems
yamanoku
2
1.1k
2025/3/18 サービスの成長で生じる幅広いパフォーマンスの問題を、 AIで手軽に解決する
shirahama_x
0
160
令和トラベルにおけるコンテンツ生成AIアプリケーション開発の実践
ippo012
1
270
Devin , 正しい付き合い方と使い方 / Living and Working with Devin
yukinagae
1
530
Featured
See All Featured
4 Signs Your Business is Dying
shpigford
183
22k
Unsuck your backbone
ammeep
670
57k
GitHub's CSS Performance
jonrohan
1030
460k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.4k
The Pragmatic Product Professional
lauravandoore
33
6.5k
What's in a price? How to price your products and services
michaelherold
245
12k
Mobile First: as difficult as doing things right
swwweet
223
9.5k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Building Adaptive Systems
keathley
41
2.5k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
45
9.5k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
227
22k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
12
610
Transcript
The state of NLP in production
None
Python Mauritius Usergroup site fb linkedin mailing list 3
url pymug.com site 4
About me compileralchemy.com 5
slides 6
The state of NLP in production 7
Hardest part of a real-world project 8
? 9
Is it cooking up an awesome model? 10
No, the world is more complex than this 11
Elements of an NLP project 12
NLP project gather data clean store train use model retrain
model 13
gather data 14
Toy project use curated data set quick extraction 15
Real project a lot of data needed data corresponds to
business case. data probably does not exist speed of data gathering find ingenious / better ways of getting data automate collection 16
clean/preprocess data 17
Toy project use an existing parser / curator e.g. NLTK
existing options 18
Real project use a parser intended for it, several custom
steps parallel processing of data 19
store data 20
Toy project laptop 21
Real project cloud database hot / cold data TTL 22
training 23
Toy project use laptop / external GPU 24
Real project on cloud training on cloud knowledge cross-cloud skills
fault tolerance 25
use model 26
Toy project local website / code 27
Real project continuation of pipeline web service architecture devops /
deploy 28
retraining 29
Toy project euhh this even exists???? 30
Real project learn cloud offerings for continuous learning ways to
retrain / fine tune 31
It's more than serving a model 32
Operation model 33
[ pipeline ] data collection --- process --- train -<-
| | --------------------------- model ^ | | | | --->--- V web service [pod] [pod] --- happy user | -> users service [pod] [pod] | -> db service [pod] 34
skills chart 35
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- --------------- --------------- | | | | | backend | | data eng | | | | | --------------- --------------- 36
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- web service deploy --------------- --------------- | | | | | ml | | data eng | | | | | --------------- --------------- models pipelining 37
code blueprint [ architecture repos ] [ pipeline repos ]
[ ml repos ] [ backend repos ] 38
Tools 39
Pandas Good queries Much resources Read SQL 40
Dask Good for it's purpose: Parallelize tasks Poor docs 41
Polars Awesome parallelizations Great docs 42
NLTK use spacy if possible 43
Notebooks great for cloud used in production on the cloud
44
Advice to research / scientists folks keep everything clean people
will come after you always in hurry / messy / i'll clean it later mood good practices? is this phrase in the korean dictionary? 45
General advices have great docs good onboarding have great standards
46
Keep learning! 47