Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The state of NLP in production 🥽
Search
Abdur-Rahmaan Janhangeer
August 27, 2023
Programming
0
140
The state of NLP in production 🥽
NLP in production vs real life
Abdur-Rahmaan Janhangeer
August 27, 2023
Tweet
Share
More Decks by Abdur-Rahmaan Janhangeer
See All by Abdur-Rahmaan Janhangeer
Building AI Agents with Python: A Deep Dive
osdotsystem
0
29
Extending Flask using the Flask Plugins API
osdotsystem
0
120
PEPs that hit the front page
osdotsystem
0
95
libSQL: Taking Sqlite To The Moon
osdotsystem
0
210
Boosting Python With Rust 🚀
osdotsystem
0
200
Flet: Flutter in Python
osdotsystem
0
440
SQLite Internals: How The World's Most Used Database Works
osdotsystem
2
3.7k
Fast Flask Dev For Big Codebases
osdotsystem
0
230
Python Bytecode or How Python Operates
osdotsystem
0
310
Other Decks in Programming
See All in Programming
iOS 17で追加されたSubscriptionStoreView を利用して5分でサブスク実装チャレンジ
natmark
0
420
GitHub Actions × AWS OIDC連携の仕組みと経緯を理解する
ota1022
0
220
SpecKitでどこまでできる? コストはどれくらい?
leveragestech
0
350
メモリ不足との戦い〜大量データを扱うアプリでの実践例〜
kwzr
1
640
Introducing ReActionView: A new ActionView-Compatible ERB Engine @ Kaigi on Rails 2025, Tokyo, Japan
marcoroth
3
660
Go Conference 2025: Goで体感するMultipath TCP ― Go 1.24 時代の MPTCP Listener を理解する
takehaya
7
1.4k
私はどうやって技術力を上げたのか
yusukebe
40
16k
そのpreloadは必要?見過ごされたpreloadが技術的負債として爆発した日
mugitti9
2
2.4k
Serena MCPのすすめ
wadakatu
4
800
PostgreSQLで手軽にDuckDBを使う!DuckDB&pg_duckdb入門/osk2025-duckdb
takahashiikki
1
230
OWASP Kansai DAY 2025.09: OSINTにふれてみよう
deka_morita
0
160
ABEMAモバイルアプリが Kotlin Multiplatformと歩んだ5年 ─ 導入と運用、成功と課題 / iOSDC 2025
akkyie
0
300
Featured
See All Featured
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.7k
The Cult of Friendly URLs
andyhume
79
6.6k
Testing 201, or: Great Expectations
jmmastey
45
7.7k
How to train your dragon (web standard)
notwaldorf
96
6.2k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
32
2.2k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
45
2.5k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
Designing for Performance
lara
610
69k
Fireside Chat
paigeccino
40
3.7k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.6k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
30
2.9k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
Transcript
The state of NLP in production
None
Python Mauritius Usergroup site fb linkedin mailing list 3
url pymug.com site 4
About me compileralchemy.com 5
slides 6
The state of NLP in production 7
Hardest part of a real-world project 8
? 9
Is it cooking up an awesome model? 10
No, the world is more complex than this 11
Elements of an NLP project 12
NLP project gather data clean store train use model retrain
model 13
gather data 14
Toy project use curated data set quick extraction 15
Real project a lot of data needed data corresponds to
business case. data probably does not exist speed of data gathering find ingenious / better ways of getting data automate collection 16
clean/preprocess data 17
Toy project use an existing parser / curator e.g. NLTK
existing options 18
Real project use a parser intended for it, several custom
steps parallel processing of data 19
store data 20
Toy project laptop 21
Real project cloud database hot / cold data TTL 22
training 23
Toy project use laptop / external GPU 24
Real project on cloud training on cloud knowledge cross-cloud skills
fault tolerance 25
use model 26
Toy project local website / code 27
Real project continuation of pipeline web service architecture devops /
deploy 28
retraining 29
Toy project euhh this even exists???? 30
Real project learn cloud offerings for continuous learning ways to
retrain / fine tune 31
It's more than serving a model 32
Operation model 33
[ pipeline ] data collection --- process --- train -<-
| | --------------------------- model ^ | | | | --->--- V web service [pod] [pod] --- happy user | -> users service [pod] [pod] | -> db service [pod] 34
skills chart 35
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- --------------- --------------- | | | | | backend | | data eng | | | | | --------------- --------------- 36
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- web service deploy --------------- --------------- | | | | | ml | | data eng | | | | | --------------- --------------- models pipelining 37
code blueprint [ architecture repos ] [ pipeline repos ]
[ ml repos ] [ backend repos ] 38
Tools 39
Pandas Good queries Much resources Read SQL 40
Dask Good for it's purpose: Parallelize tasks Poor docs 41
Polars Awesome parallelizations Great docs 42
NLTK use spacy if possible 43
Notebooks great for cloud used in production on the cloud
44
Advice to research / scientists folks keep everything clean people
will come after you always in hurry / messy / i'll clean it later mood good practices? is this phrase in the korean dictionary? 45
General advices have great docs good onboarding have great standards
46
Keep learning! 47