Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The state of NLP in production 🥽
Search
Abdur-Rahmaan Janhangeer
August 27, 2023
Programming
0
120
The state of NLP in production 🥽
NLP in production vs real life
Abdur-Rahmaan Janhangeer
August 27, 2023
Tweet
Share
More Decks by Abdur-Rahmaan Janhangeer
See All by Abdur-Rahmaan Janhangeer
Building AI Agents with Python: A Deep Dive
osdotsystem
0
12
Extending Flask using the Flask Plugins API
osdotsystem
0
90
PEPs that hit the front page
osdotsystem
0
78
libSQL: Taking Sqlite To The Moon
osdotsystem
0
180
Boosting Python With Rust 🚀
osdotsystem
0
180
Flet: Flutter in Python
osdotsystem
0
400
SQLite Internals: How The World's Most Used Database Works
osdotsystem
2
3.7k
Fast Flask Dev For Big Codebases
osdotsystem
0
210
Python Bytecode or How Python Operates
osdotsystem
0
280
Other Decks in Programming
See All in Programming
OpenNext + Hono on Cloudflare でイマドキWeb開発スタックを実現する
rokuosan
0
110
Zennの運営完全に理解した #完全に理解したTalk
wadayusuke
1
140
JVM の仕組みを理解して PHP で実装してみよう
m3m0r7
PRO
1
240
Proxmoxをまとめて管理できるコンソール作ってみました
karugamo
1
390
iOSアプリ開発もLLMで自動運転する
hiragram
6
2.1k
型安全なDrag and Dropの設計を考える
yudppp
5
650
TypeScriptのmoduleオプションを改めて整理する
bicstone
4
420
生成AI時代のフルスタック開発
kenn
10
2.7k
Efficiency and Rock 'n’ Roll (Really!)
hollycummins
0
590
衛星の軌道をWeb地図上に表示する
sankichi92
0
250
技術的負債と戦略的に戦わざるを得ない場合のオブザーバビリティ活用術 / Leveraging Observability When Strategically Dealing with Technical Debt
yoshiyoshifujii
0
160
メモリリークが発生した時にpprofを使用して原因特定した話
zono33lhd
0
100
Featured
See All Featured
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
160
15k
GraphQLとの向き合い方2022年版
quramy
46
14k
[RailsConf 2023] Rails as a piece of cake
palkan
55
5.6k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
Embracing the Ebb and Flow
colly
85
4.7k
A Tale of Four Properties
chriscoyier
159
23k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.3k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Building Applications with DynamoDB
mza
95
6.4k
What's in a price? How to price your products and services
michaelherold
245
12k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
52
2.8k
Transcript
The state of NLP in production
None
Python Mauritius Usergroup site fb linkedin mailing list 3
url pymug.com site 4
About me compileralchemy.com 5
slides 6
The state of NLP in production 7
Hardest part of a real-world project 8
? 9
Is it cooking up an awesome model? 10
No, the world is more complex than this 11
Elements of an NLP project 12
NLP project gather data clean store train use model retrain
model 13
gather data 14
Toy project use curated data set quick extraction 15
Real project a lot of data needed data corresponds to
business case. data probably does not exist speed of data gathering find ingenious / better ways of getting data automate collection 16
clean/preprocess data 17
Toy project use an existing parser / curator e.g. NLTK
existing options 18
Real project use a parser intended for it, several custom
steps parallel processing of data 19
store data 20
Toy project laptop 21
Real project cloud database hot / cold data TTL 22
training 23
Toy project use laptop / external GPU 24
Real project on cloud training on cloud knowledge cross-cloud skills
fault tolerance 25
use model 26
Toy project local website / code 27
Real project continuation of pipeline web service architecture devops /
deploy 28
retraining 29
Toy project euhh this even exists???? 30
Real project learn cloud offerings for continuous learning ways to
retrain / fine tune 31
It's more than serving a model 32
Operation model 33
[ pipeline ] data collection --- process --- train -<-
| | --------------------------- model ^ | | | | --->--- V web service [pod] [pod] --- happy user | -> users service [pod] [pod] | -> db service [pod] 34
skills chart 35
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- --------------- --------------- | | | | | backend | | data eng | | | | | --------------- --------------- 36
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- web service deploy --------------- --------------- | | | | | ml | | data eng | | | | | --------------- --------------- models pipelining 37
code blueprint [ architecture repos ] [ pipeline repos ]
[ ml repos ] [ backend repos ] 38
Tools 39
Pandas Good queries Much resources Read SQL 40
Dask Good for it's purpose: Parallelize tasks Poor docs 41
Polars Awesome parallelizations Great docs 42
NLTK use spacy if possible 43
Notebooks great for cloud used in production on the cloud
44
Advice to research / scientists folks keep everything clean people
will come after you always in hurry / messy / i'll clean it later mood good practices? is this phrase in the korean dictionary? 45
General advices have great docs good onboarding have great standards
46
Keep learning! 47