Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The state of NLP in production 🥽
Search
Abdur-Rahmaan Janhangeer
August 27, 2023
Programming
0
140
The state of NLP in production 🥽
NLP in production vs real life
Abdur-Rahmaan Janhangeer
August 27, 2023
Tweet
Share
More Decks by Abdur-Rahmaan Janhangeer
See All by Abdur-Rahmaan Janhangeer
Building AI Agents with Python: A Deep Dive
osdotsystem
0
36
Extending Flask using the Flask Plugins API
osdotsystem
0
120
PEPs that hit the front page
osdotsystem
0
98
libSQL: Taking Sqlite To The Moon
osdotsystem
0
210
Boosting Python With Rust 🚀
osdotsystem
0
210
Flet: Flutter in Python
osdotsystem
0
460
SQLite Internals: How The World's Most Used Database Works
osdotsystem
2
3.7k
Fast Flask Dev For Big Codebases
osdotsystem
0
240
Python Bytecode or How Python Operates
osdotsystem
0
320
Other Decks in Programming
See All in Programming
AsyncSequenceとAsyncStreamのプロポーザルを全部読む!!
s_shimotori
1
270
KoogではじめるAIエージェント開発
hiroaki404
1
420
なんでRustの環境構築してないのにRust製のツールが動くの? / Why Do Rust-Based Tools Run Without a Rust Environment?
ssssota
15
48k
SUZURIの規約違反チェックにおけるクリエイタフィードバックの試⾏錯誤/Trial and Error in Creator Feedback for SUZURI's Terms of Service Violation Checks
ae14watanabe
1
140
ボトムアップの生成AI活用を推進する社内AIエージェント開発
aku11i
0
1.6k
Honoを技術選定したAI要件定義プラットフォームAcsimでの意思決定
codenote
0
130
高単価案件で働くための心構え
nullnull
0
100
flutter_kaigi_2025.pdf
kyoheig3
1
180
予防に勝る防御なし(2025年版) - 堅牢なコードを導く様々な設計のヒント / Growing Reliable Code PHP Conference Fukuoka 2025
twada
PRO
35
11k
AI時代に必須!状況言語化スキル / ai-context-verbalization
minodriven
3
370
Kotlin 2.2が切り拓く: コンテキストパラメータで書く関数型DSLと新しい依存管理のかたち
knih
0
400
詳細の決定を遅らせつつ実装を早くする
shimabox
1
980
Featured
See All Featured
Designing Experiences People Love
moore
142
24k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.7k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
2.9k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Docker and Python
trallard
46
3.6k
Become a Pro
speakerdeck
PRO
29
5.6k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.8k
Into the Great Unknown - MozCon
thekraken
40
2.1k
Visualization
eitanlees
150
16k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Transcript
The state of NLP in production
None
Python Mauritius Usergroup site fb linkedin mailing list 3
url pymug.com site 4
About me compileralchemy.com 5
slides 6
The state of NLP in production 7
Hardest part of a real-world project 8
? 9
Is it cooking up an awesome model? 10
No, the world is more complex than this 11
Elements of an NLP project 12
NLP project gather data clean store train use model retrain
model 13
gather data 14
Toy project use curated data set quick extraction 15
Real project a lot of data needed data corresponds to
business case. data probably does not exist speed of data gathering find ingenious / better ways of getting data automate collection 16
clean/preprocess data 17
Toy project use an existing parser / curator e.g. NLTK
existing options 18
Real project use a parser intended for it, several custom
steps parallel processing of data 19
store data 20
Toy project laptop 21
Real project cloud database hot / cold data TTL 22
training 23
Toy project use laptop / external GPU 24
Real project on cloud training on cloud knowledge cross-cloud skills
fault tolerance 25
use model 26
Toy project local website / code 27
Real project continuation of pipeline web service architecture devops /
deploy 28
retraining 29
Toy project euhh this even exists???? 30
Real project learn cloud offerings for continuous learning ways to
retrain / fine tune 31
It's more than serving a model 32
Operation model 33
[ pipeline ] data collection --- process --- train -<-
| | --------------------------- model ^ | | | | --->--- V web service [pod] [pod] --- happy user | -> users service [pod] [pod] | -> db service [pod] 34
skills chart 35
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- --------------- --------------- | | | | | backend | | data eng | | | | | --------------- --------------- 36
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- web service deploy --------------- --------------- | | | | | ml | | data eng | | | | | --------------- --------------- models pipelining 37
code blueprint [ architecture repos ] [ pipeline repos ]
[ ml repos ] [ backend repos ] 38
Tools 39
Pandas Good queries Much resources Read SQL 40
Dask Good for it's purpose: Parallelize tasks Poor docs 41
Polars Awesome parallelizations Great docs 42
NLTK use spacy if possible 43
Notebooks great for cloud used in production on the cloud
44
Advice to research / scientists folks keep everything clean people
will come after you always in hurry / messy / i'll clean it later mood good practices? is this phrase in the korean dictionary? 45
General advices have great docs good onboarding have great standards
46
Keep learning! 47