Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The state of NLP in production 🥽
Search
Abdur-Rahmaan Janhangeer
August 27, 2023
Programming
0
120
The state of NLP in production 🥽
NLP in production vs real life
Abdur-Rahmaan Janhangeer
August 27, 2023
Tweet
Share
More Decks by Abdur-Rahmaan Janhangeer
See All by Abdur-Rahmaan Janhangeer
Building AI Agents with Python: A Deep Dive
osdotsystem
0
19
Extending Flask using the Flask Plugins API
osdotsystem
0
100
PEPs that hit the front page
osdotsystem
0
84
libSQL: Taking Sqlite To The Moon
osdotsystem
0
190
Boosting Python With Rust 🚀
osdotsystem
0
190
Flet: Flutter in Python
osdotsystem
0
410
SQLite Internals: How The World's Most Used Database Works
osdotsystem
2
3.7k
Fast Flask Dev For Big Codebases
osdotsystem
0
210
Python Bytecode or How Python Operates
osdotsystem
0
290
Other Decks in Programming
See All in Programming
Cursor AI Agentと伴走する アプリケーションの高速リプレイス
daisuketakeda
1
130
Deep Dive into ~/.claude/projects
hiragram
9
1.6k
#kanrk08 / 公開版 PicoRubyとマイコンでの自作トレーニング計測装置を用いたワークアウトの理想と現実
bash0c7
1
530
PHPでWebSocketサーバーを実装しよう2025
kubotak
0
210
Composerが「依存解決」のためにどんな工夫をしているか #phpcon
o0h
PRO
1
240
アンドパッドの Go 勉強会「 gopher 会」とその内容の紹介
andpad
0
270
AIエージェントはこう育てる - GitHub Copilot Agentとチームの共進化サイクル
koboriakira
0
440
童醫院敏捷轉型的實踐經驗
cclai999
0
190
今ならAmazon ECSのサービス間通信をどう選ぶか / Selection of ECS Interservice Communication 2025
tkikuc
20
3.7k
Beyond Portability: Live Migration for Evolving WebAssembly Workloads
chikuwait
0
390
CursorはMCPを使った方が良いぞ
taigakono
1
180
PicoRuby on Rails
makicamel
2
100
Featured
See All Featured
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
How to Think Like a Performance Engineer
csswizardry
24
1.7k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.8k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
138
34k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
The Language of Interfaces
destraynor
158
25k
Balancing Empowerment & Direction
lara
1
370
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.5k
Transcript
The state of NLP in production
None
Python Mauritius Usergroup site fb linkedin mailing list 3
url pymug.com site 4
About me compileralchemy.com 5
slides 6
The state of NLP in production 7
Hardest part of a real-world project 8
? 9
Is it cooking up an awesome model? 10
No, the world is more complex than this 11
Elements of an NLP project 12
NLP project gather data clean store train use model retrain
model 13
gather data 14
Toy project use curated data set quick extraction 15
Real project a lot of data needed data corresponds to
business case. data probably does not exist speed of data gathering find ingenious / better ways of getting data automate collection 16
clean/preprocess data 17
Toy project use an existing parser / curator e.g. NLTK
existing options 18
Real project use a parser intended for it, several custom
steps parallel processing of data 19
store data 20
Toy project laptop 21
Real project cloud database hot / cold data TTL 22
training 23
Toy project use laptop / external GPU 24
Real project on cloud training on cloud knowledge cross-cloud skills
fault tolerance 25
use model 26
Toy project local website / code 27
Real project continuation of pipeline web service architecture devops /
deploy 28
retraining 29
Toy project euhh this even exists???? 30
Real project learn cloud offerings for continuous learning ways to
retrain / fine tune 31
It's more than serving a model 32
Operation model 33
[ pipeline ] data collection --- process --- train -<-
| | --------------------------- model ^ | | | | --->--- V web service [pod] [pod] --- happy user | -> users service [pod] [pod] | -> db service [pod] 34
skills chart 35
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- --------------- --------------- | | | | | backend | | data eng | | | | | --------------- --------------- 36
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- web service deploy --------------- --------------- | | | | | ml | | data eng | | | | | --------------- --------------- models pipelining 37
code blueprint [ architecture repos ] [ pipeline repos ]
[ ml repos ] [ backend repos ] 38
Tools 39
Pandas Good queries Much resources Read SQL 40
Dask Good for it's purpose: Parallelize tasks Poor docs 41
Polars Awesome parallelizations Great docs 42
NLTK use spacy if possible 43
Notebooks great for cloud used in production on the cloud
44
Advice to research / scientists folks keep everything clean people
will come after you always in hurry / messy / i'll clean it later mood good practices? is this phrase in the korean dictionary? 45
General advices have great docs good onboarding have great standards
46
Keep learning! 47