Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The state of NLP in production 🥽
Search
Abdur-Rahmaan Janhangeer
August 27, 2023
Programming
0
73
The state of NLP in production 🥽
NLP in production vs real life
Abdur-Rahmaan Janhangeer
August 27, 2023
Tweet
Share
More Decks by Abdur-Rahmaan Janhangeer
See All by Abdur-Rahmaan Janhangeer
Extending Flask using the Flask Plugins API
osdotsystem
0
35
PEPs that hit the front page
osdotsystem
0
38
libSQL: Taking Sqlite To The Moon
osdotsystem
0
130
Boosting Python With Rust 🚀
osdotsystem
0
130
Flet: Flutter in Python
osdotsystem
0
300
SQLite Internals: How The World's Most Used Database Works
osdotsystem
2
3.6k
Fast Flask Dev For Big Codebases
osdotsystem
0
160
Python Bytecode or How Python Operates
osdotsystem
0
230
How To OpenSource
osdotsystem
0
130
Other Decks in Programming
See All in Programming
CSC509 Lecture 09
javiergs
PRO
0
140
レガシーシステムにどう立ち向かうか 複雑さと理想と現実/vs-legacy
suzukihoge
14
2.2k
どうして僕の作ったクラスが手続き型と言われなきゃいけないんですか
akikogoto
1
120
Snowflake x dbtで作るセキュアでアジャイルなデータ基盤
tsoshiro
2
520
WebフロントエンドにおけるGraphQL(あるいはバックエンドのAPI)との向き合い方 / #241106_plk_frontend
izumin5210
4
1.4k
카카오페이는 어떻게 수천만 결제를 처리할까? 우아한 결제 분산락 노하우
kakao
PRO
0
110
色々なIaCツールを実際に触って比較してみる
iriikeita
0
330
Streams APIとTCPフロー制御 / Web Streams API and TCP flow control
tasshi
2
350
イベント駆動で成長して委員会
happymana
1
330
3rd party scriptでもReactを使いたい! Preact + Reactのハイブリッド開発
righttouch
PRO
1
610
Realtime API 入門
riofujimon
0
150
Ethereum_.pdf
nekomatu
0
460
Featured
See All Featured
How STYLIGHT went responsive
nonsquared
95
5.2k
How GitHub (no longer) Works
holman
310
140k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
26
2.1k
4 Signs Your Business is Dying
shpigford
180
21k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
Happy Clients
brianwarren
98
6.7k
For a Future-Friendly Web
brad_frost
175
9.4k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
232
17k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
131
33k
The Power of CSS Pseudo Elements
geoffreycrofte
73
5.3k
A Philosophy of Restraint
colly
203
16k
Side Projects
sachag
452
42k
Transcript
The state of NLP in production
None
Python Mauritius Usergroup site fb linkedin mailing list 3
url pymug.com site 4
About me compileralchemy.com 5
slides 6
The state of NLP in production 7
Hardest part of a real-world project 8
? 9
Is it cooking up an awesome model? 10
No, the world is more complex than this 11
Elements of an NLP project 12
NLP project gather data clean store train use model retrain
model 13
gather data 14
Toy project use curated data set quick extraction 15
Real project a lot of data needed data corresponds to
business case. data probably does not exist speed of data gathering find ingenious / better ways of getting data automate collection 16
clean/preprocess data 17
Toy project use an existing parser / curator e.g. NLTK
existing options 18
Real project use a parser intended for it, several custom
steps parallel processing of data 19
store data 20
Toy project laptop 21
Real project cloud database hot / cold data TTL 22
training 23
Toy project use laptop / external GPU 24
Real project on cloud training on cloud knowledge cross-cloud skills
fault tolerance 25
use model 26
Toy project local website / code 27
Real project continuation of pipeline web service architecture devops /
deploy 28
retraining 29
Toy project euhh this even exists???? 30
Real project learn cloud offerings for continuous learning ways to
retrain / fine tune 31
It's more than serving a model 32
Operation model 33
[ pipeline ] data collection --- process --- train -<-
| | --------------------------- model ^ | | | | --->--- V web service [pod] [pod] --- happy user | -> users service [pod] [pod] | -> db service [pod] 34
skills chart 35
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- --------------- --------------- | | | | | backend | | data eng | | | | | --------------- --------------- 36
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- web service deploy --------------- --------------- | | | | | ml | | data eng | | | | | --------------- --------------- models pipelining 37
code blueprint [ architecture repos ] [ pipeline repos ]
[ ml repos ] [ backend repos ] 38
Tools 39
Pandas Good queries Much resources Read SQL 40
Dask Good for it's purpose: Parallelize tasks Poor docs 41
Polars Awesome parallelizations Great docs 42
NLTK use spacy if possible 43
Notebooks great for cloud used in production on the cloud
44
Advice to research / scientists folks keep everything clean people
will come after you always in hurry / messy / i'll clean it later mood good practices? is this phrase in the korean dictionary? 45
General advices have great docs good onboarding have great standards
46
Keep learning! 47