Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The state of NLP in production 🥽
Search
Abdur-Rahmaan Janhangeer
August 27, 2023
Programming
0
140
The state of NLP in production 🥽
NLP in production vs real life
Abdur-Rahmaan Janhangeer
August 27, 2023
Tweet
Share
More Decks by Abdur-Rahmaan Janhangeer
See All by Abdur-Rahmaan Janhangeer
Building AI Agents with Python: A Deep Dive
osdotsystem
0
30
Extending Flask using the Flask Plugins API
osdotsystem
0
120
PEPs that hit the front page
osdotsystem
0
96
libSQL: Taking Sqlite To The Moon
osdotsystem
0
210
Boosting Python With Rust 🚀
osdotsystem
0
210
Flet: Flutter in Python
osdotsystem
0
450
SQLite Internals: How The World's Most Used Database Works
osdotsystem
2
3.7k
Fast Flask Dev For Big Codebases
osdotsystem
0
230
Python Bytecode or How Python Operates
osdotsystem
0
310
Other Decks in Programming
See All in Programming
Software Architecture
hschwentner
6
2.3k
Claude Agent SDK を使ってみよう
hyshu
0
1.3k
Six and a half ridiculous things to do with Quarkus
hollycummins
0
200
他言語経験者が Golangci-lint を最初のコーディングメンターにした話 / How Golangci-lint Became My First Coding Mentor: A Story from a Polyglot Programmer
uma31
0
320
理論と実務のギャップを超える
eycjur
0
170
実践Claude Code:20の失敗から学ぶAIペアプログラミング
takedatakashi
16
6.4k
登壇は dynamic! な営みである / speech is dynamic
da1chi
0
350
O Que É e Como Funciona o PHP-FPM?
marcelgsantos
0
110
Devoxx BE - Local Development in the AI Era
kdubois
0
130
CSC305 Lecture 09
javiergs
PRO
0
300
Devoxx BE 2025 Loom lab
josepaumard
0
110
All About Angular's New Signal Forms
manfredsteyer
PRO
0
200
Featured
See All Featured
How to Think Like a Performance Engineer
csswizardry
27
2.1k
Optimizing for Happiness
mojombo
379
70k
A Modern Web Designer's Workflow
chriscoyier
697
190k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Documentation Writing (for coders)
carmenintech
75
5.1k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
115
20k
Making the Leap to Tech Lead
cromwellryan
135
9.6k
Designing for humans not robots
tammielis
254
26k
Balancing Empowerment & Direction
lara
5
700
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.7k
Visualization
eitanlees
149
16k
Transcript
The state of NLP in production
None
Python Mauritius Usergroup site fb linkedin mailing list 3
url pymug.com site 4
About me compileralchemy.com 5
slides 6
The state of NLP in production 7
Hardest part of a real-world project 8
? 9
Is it cooking up an awesome model? 10
No, the world is more complex than this 11
Elements of an NLP project 12
NLP project gather data clean store train use model retrain
model 13
gather data 14
Toy project use curated data set quick extraction 15
Real project a lot of data needed data corresponds to
business case. data probably does not exist speed of data gathering find ingenious / better ways of getting data automate collection 16
clean/preprocess data 17
Toy project use an existing parser / curator e.g. NLTK
existing options 18
Real project use a parser intended for it, several custom
steps parallel processing of data 19
store data 20
Toy project laptop 21
Real project cloud database hot / cold data TTL 22
training 23
Toy project use laptop / external GPU 24
Real project on cloud training on cloud knowledge cross-cloud skills
fault tolerance 25
use model 26
Toy project local website / code 27
Real project continuation of pipeline web service architecture devops /
deploy 28
retraining 29
Toy project euhh this even exists???? 30
Real project learn cloud offerings for continuous learning ways to
retrain / fine tune 31
It's more than serving a model 32
Operation model 33
[ pipeline ] data collection --- process --- train -<-
| | --------------------------- model ^ | | | | --->--- V web service [pod] [pod] --- happy user | -> users service [pod] [pod] | -> db service [pod] 34
skills chart 35
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- --------------- --------------- | | | | | backend | | data eng | | | | | --------------- --------------- 36
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- web service deploy --------------- --------------- | | | | | ml | | data eng | | | | | --------------- --------------- models pipelining 37
code blueprint [ architecture repos ] [ pipeline repos ]
[ ml repos ] [ backend repos ] 38
Tools 39
Pandas Good queries Much resources Read SQL 40
Dask Good for it's purpose: Parallelize tasks Poor docs 41
Polars Awesome parallelizations Great docs 42
NLTK use spacy if possible 43
Notebooks great for cloud used in production on the cloud
44
Advice to research / scientists folks keep everything clean people
will come after you always in hurry / messy / i'll clean it later mood good practices? is this phrase in the korean dictionary? 45
General advices have great docs good onboarding have great standards
46
Keep learning! 47