Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The state of NLP in production 🥽
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Abdur-Rahmaan Janhangeer
August 27, 2023
Programming
0
170
The state of NLP in production 🥽
NLP in production vs real life
Abdur-Rahmaan Janhangeer
August 27, 2023
Tweet
Share
More Decks by Abdur-Rahmaan Janhangeer
See All by Abdur-Rahmaan Janhangeer
Building AI Agents with Python: A Deep Dive
osdotsystem
0
64
Extending Flask using the Flask Plugins API
osdotsystem
0
130
PEPs that hit the front page
osdotsystem
0
110
libSQL: Taking Sqlite To The Moon
osdotsystem
0
220
Boosting Python With Rust 🚀
osdotsystem
0
220
Flet: Flutter in Python
osdotsystem
0
500
SQLite Internals: How The World's Most Used Database Works
osdotsystem
2
3.8k
Fast Flask Dev For Big Codebases
osdotsystem
0
250
Python Bytecode or How Python Operates
osdotsystem
0
330
Other Decks in Programming
See All in Programming
CSC307 Lecture 05
javiergs
PRO
0
490
AIで開発はどれくらい加速したのか?AIエージェントによるコード生成を、現場の評価と研究開発の評価の両面からdeep diveしてみる
daisuketakeda
1
970
TerraformとStrands AgentsでAmazon Bedrock AgentCoreのSSO認証付きエージェントを量産しよう!
neruneruo
4
2.7k
2026年 エンジニアリング自己学習法
yumechi
0
130
AI & Enginnering
codelynx
0
110
【卒業研究】会話ログ分析によるユーザーごとの関心に応じた話題提案手法
momok47
0
190
Oxlintはいいぞ
yug1224
5
1.3k
プロダクトオーナーから見たSOC2 _SOC2ゆるミートアップ#2
kekekenta
0
200
AI前提で考えるiOSアプリのモダナイズ設計
yuukiw00w
0
220
Rust 製のコードエディタ “Zed” を使ってみた
nearme_tech
PRO
0
130
CSC307 Lecture 01
javiergs
PRO
0
680
例外処理とどう使い分ける?Result型を使ったエラー設計 #burikaigi
kajitack
16
6k
Featured
See All Featured
Faster Mobile Websites
deanohume
310
31k
Digital Ethics as a Driver of Design Innovation
axbom
PRO
1
170
Odyssey Design
rkendrick25
PRO
1
490
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.7k
Noah Learner - AI + Me: how we built a GSC Bulk Export data pipeline
techseoconnect
PRO
0
100
A Modern Web Designer's Workflow
chriscoyier
698
190k
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
55
Balancing Empowerment & Direction
lara
5
880
Efficient Content Optimization with Google Search Console & Apps Script
katarinadahlin
PRO
0
310
How to build an LLM SEO readiness audit: a practical framework
nmsamuel
1
640
Done Done
chrislema
186
16k
Statistics for Hackers
jakevdp
799
230k
Transcript
The state of NLP in production
None
Python Mauritius Usergroup site fb linkedin mailing list 3
url pymug.com site 4
About me compileralchemy.com 5
slides 6
The state of NLP in production 7
Hardest part of a real-world project 8
? 9
Is it cooking up an awesome model? 10
No, the world is more complex than this 11
Elements of an NLP project 12
NLP project gather data clean store train use model retrain
model 13
gather data 14
Toy project use curated data set quick extraction 15
Real project a lot of data needed data corresponds to
business case. data probably does not exist speed of data gathering find ingenious / better ways of getting data automate collection 16
clean/preprocess data 17
Toy project use an existing parser / curator e.g. NLTK
existing options 18
Real project use a parser intended for it, several custom
steps parallel processing of data 19
store data 20
Toy project laptop 21
Real project cloud database hot / cold data TTL 22
training 23
Toy project use laptop / external GPU 24
Real project on cloud training on cloud knowledge cross-cloud skills
fault tolerance 25
use model 26
Toy project local website / code 27
Real project continuation of pipeline web service architecture devops /
deploy 28
retraining 29
Toy project euhh this even exists???? 30
Real project learn cloud offerings for continuous learning ways to
retrain / fine tune 31
It's more than serving a model 32
Operation model 33
[ pipeline ] data collection --- process --- train -<-
| | --------------------------- model ^ | | | | --->--- V web service [pod] [pod] --- happy user | -> users service [pod] [pod] | -> db service [pod] 34
skills chart 35
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- --------------- --------------- | | | | | backend | | data eng | | | | | --------------- --------------- 36
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- web service deploy --------------- --------------- | | | | | ml | | data eng | | | | | --------------- --------------- models pipelining 37
code blueprint [ architecture repos ] [ pipeline repos ]
[ ml repos ] [ backend repos ] 38
Tools 39
Pandas Good queries Much resources Read SQL 40
Dask Good for it's purpose: Parallelize tasks Poor docs 41
Polars Awesome parallelizations Great docs 42
NLTK use spacy if possible 43
Notebooks great for cloud used in production on the cloud
44
Advice to research / scientists folks keep everything clean people
will come after you always in hurry / messy / i'll clean it later mood good practices? is this phrase in the korean dictionary? 45
General advices have great docs good onboarding have great standards
46
Keep learning! 47