Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The state of NLP in production 🥽
Search
Abdur-Rahmaan Janhangeer
August 27, 2023
Programming
0
87
The state of NLP in production 🥽
NLP in production vs real life
Abdur-Rahmaan Janhangeer
August 27, 2023
Tweet
Share
More Decks by Abdur-Rahmaan Janhangeer
See All by Abdur-Rahmaan Janhangeer
Extending Flask using the Flask Plugins API
osdotsystem
0
50
PEPs that hit the front page
osdotsystem
0
53
libSQL: Taking Sqlite To The Moon
osdotsystem
0
150
Boosting Python With Rust 🚀
osdotsystem
0
150
Flet: Flutter in Python
osdotsystem
0
330
SQLite Internals: How The World's Most Used Database Works
osdotsystem
2
3.6k
Fast Flask Dev For Big Codebases
osdotsystem
0
180
Python Bytecode or How Python Operates
osdotsystem
0
250
How To OpenSource
osdotsystem
0
140
Other Decks in Programming
See All in Programming
20年もののレガシープロダクトに 0からPHPStanを入れるまで / phpcon2024
hirobe1999
0
1k
Azure AI Foundryのご紹介
qt_luigi
1
210
asdf-ecspresso作って 友達が増えた話 / Fujiwara Tech Conference 2025
koluku
0
1.4k
Simple組み合わせ村から大都会Railsにやってきた俺は / Coming to Rails from the Simple
moznion
3
2.2k
DMMオンラインサロンアプリのSwift化
hayatan
0
190
AWS re:Invent 2024個人的まとめ
satoshi256kbyte
0
100
PHPUnitしか使ってこなかった 一般PHPerがPestに乗り換えた実録
mashirou1234
0
420
Итераторы в Go 1.23: зачем они нужны, как использовать, и насколько они быстрые?
lamodatech
0
1.4k
技術的負債と向き合うカイゼン活動を1年続けて分かった "持続可能" なプロダクト開発
yuichiro_serita
0
300
Swiftコンパイラ超入門+async関数の仕組み
shiz
0
180
React 19でお手軽にCSS-in-JSを自作する
yukukotani
5
570
『改訂新版 良いコード/悪いコードで学ぶ設計入門』活用方法−爆速でスキルアップする!効果的な学習アプローチ / effective-learning-of-good-code
minodriven
28
4.2k
Featured
See All Featured
Build your cross-platform service in a week with App Engine
jlugia
229
18k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
3
360
It's Worth the Effort
3n
183
28k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2k
Facilitating Awesome Meetings
lara
51
6.2k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
29
960
Measuring & Analyzing Core Web Vitals
bluesmoon
5
210
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Why Our Code Smells
bkeepers
PRO
335
57k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Into the Great Unknown - MozCon
thekraken
34
1.6k
Gamification - CAS2011
davidbonilla
80
5.1k
Transcript
The state of NLP in production
None
Python Mauritius Usergroup site fb linkedin mailing list 3
url pymug.com site 4
About me compileralchemy.com 5
slides 6
The state of NLP in production 7
Hardest part of a real-world project 8
? 9
Is it cooking up an awesome model? 10
No, the world is more complex than this 11
Elements of an NLP project 12
NLP project gather data clean store train use model retrain
model 13
gather data 14
Toy project use curated data set quick extraction 15
Real project a lot of data needed data corresponds to
business case. data probably does not exist speed of data gathering find ingenious / better ways of getting data automate collection 16
clean/preprocess data 17
Toy project use an existing parser / curator e.g. NLTK
existing options 18
Real project use a parser intended for it, several custom
steps parallel processing of data 19
store data 20
Toy project laptop 21
Real project cloud database hot / cold data TTL 22
training 23
Toy project use laptop / external GPU 24
Real project on cloud training on cloud knowledge cross-cloud skills
fault tolerance 25
use model 26
Toy project local website / code 27
Real project continuation of pipeline web service architecture devops /
deploy 28
retraining 29
Toy project euhh this even exists???? 30
Real project learn cloud offerings for continuous learning ways to
retrain / fine tune 31
It's more than serving a model 32
Operation model 33
[ pipeline ] data collection --- process --- train -<-
| | --------------------------- model ^ | | | | --->--- V web service [pod] [pod] --- happy user | -> users service [pod] [pod] | -> db service [pod] 34
skills chart 35
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- --------------- --------------- | | | | | backend | | data eng | | | | | --------------- --------------- 36
skills --------------- --------------- | | | | | backend |
| devops | | | | | --------------- --------------- web service deploy --------------- --------------- | | | | | ml | | data eng | | | | | --------------- --------------- models pipelining 37
code blueprint [ architecture repos ] [ pipeline repos ]
[ ml repos ] [ backend repos ] 38
Tools 39
Pandas Good queries Much resources Read SQL 40
Dask Good for it's purpose: Parallelize tasks Poor docs 41
Polars Awesome parallelizations Great docs 42
NLTK use spacy if possible 43
Notebooks great for cloud used in production on the cloud
44
Advice to research / scientists folks keep everything clean people
will come after you always in hurry / messy / i'll clean it later mood good practices? is this phrase in the korean dictionary? 45
General advices have great docs good onboarding have great standards
46
Keep learning! 47