Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Functional Programming and Ruby - EuRuKo
Search
Pat Shaughnessy
June 28, 2013
Technology
2
780
Functional Programming and Ruby - EuRuKo
Slides from Athens, June 2013
Pat Shaughnessy
June 28, 2013
Tweet
Share
More Decks by Pat Shaughnessy
See All by Pat Shaughnessy
20000 Leagues Under ActiveRecord
pat_shaughnessy
0
120
Visualizing Garbage Collection in Rubinius, JRuby and Ruby 2.0
pat_shaughnessy
8
720
Functional Programming and Ruby
pat_shaughnessy
6
1.6k
Dissecting a Ruby Block
pat_shaughnessy
10
450
Other Decks in Technology
See All in Technology
SQLAlchemy の select(User).where(User.id =="123") を理解してみる/sqlalchemy deep dive
3l4l5
3
380
ヘンリー会社紹介資料(エンジニア向け) / company deck for engineer
henryofficial
0
390
OTEPsで知るOpenTelemetryの未来 / Observability Conference Tokyo 2025
arthur1
0
250
[VPoE Global Summit] サービスレベル目標による信頼性への投資最適化
satos
0
250
デザインとエンジニアリングの架け橋を目指す OPTiMのデザインシステム「nucleus」の軌跡と広げ方
optim
0
120
個人でデジタル庁の デザインシステムをVue.jsで 作っている話
nishiharatsubasa
3
5.1k
もう外には出ない。より快適なフルリモート環境を目指して
mottyzzz
13
10k
SCONE - 動画配信の帯域を最適化する新プロトコル
kazuho
1
380
オブザーバビリティが育むシステム理解と好奇心
maruloop
2
1.2k
知覚とデザイン
rinchoku
1
590
CNCFの視点で捉えるPlatform Engineering - 最新動向と展望 / Platform Engineering from the CNCF Perspective
hhiroshell
0
140
AIでデータ活用を加速させる取り組み / Leveraging AI to accelerate data utilization
okiyuki99
0
240
Featured
See All Featured
The Straight Up "How To Draw Better" Workshop
denniskardys
238
140k
How GitHub (no longer) Works
holman
315
140k
Navigating Team Friction
lara
190
15k
Side Projects
sachag
455
43k
Being A Developer After 40
akosma
91
590k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1k
Embracing the Ebb and Flow
colly
88
4.9k
Why Our Code Smells
bkeepers
PRO
340
57k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.1k
Speed Design
sergeychernyshev
32
1.2k
It's Worth the Effort
3n
187
28k
Building Applications with DynamoDB
mza
96
6.7k
Transcript
foo :: Ord a => [a] -> [a] foo []
= [] foo (p:xs) = (foo lesser) ++ [p] ++ (foo greater) where lesser = filter (< p) xs greater = filter (>= p) xs
None
Ruby is a language designed in the following steps: *
take a simple lisp language * add blocks, inspired by higher order functions * add methods found in Smalltalk * add functionality found in Perl So, Ruby was a Lisp originally, in theory. Let's call it MatzLisp from now on. ;-) ! ! ! ! ! ! ! matz.
None
None
None
None
Haskell... is a polymorphically statically typed, lazy, purely functional language,
quite different from most other programming languages. The language is named for Haskell Brooks Curry, ...
- what is “functional programming?” - higher order functions -
lazy evaluation - memoization
None
higher order functions
[1..10] =>[1, 2, 3, 4, 5, 6, 7, 8, 9,
10] (1..10).to_a
[ x*x | x <- [1..10]] (1..10).collect { |x| x*x
} =>[1, 4, 9, 16, 25, 36, 49, 64, 81, 100] (1..10).map { |x| x*x }
None
map (\x -> x*x) [1..10] (1..10).map &lambda { |x| x*x
} =>[1, 4, 9, 16, 25, 36, 49, 64, 81, 100] (1..10).map &(->(x) { x*x })
lazy evaluation
[1..] =>[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28, 29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54, 55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80, 81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,1 05,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123, etc...
take 10 [1..] =>[1,2,3,4,5,6,7,8,9,10]
take 10 [ x+1 | x <- [ x*x |
x <- [1..]]] =>[2,5,10,17,26,37,50,65,82,101]
(1..Float::INFINITY) .lazy .collect { |x| x*x } .collect { |x|
x+1 } .take(10).force =>[2,5,10,17,26,37,50,65,82,101]
=>[2,5,10,17,26,37,50,65,82,101] (1..Float::INFINITY) .lazy .collect { |x| x*x } .collect {
|x| x+1 } .first(10)
(1..10).collect { |x| x*x } each Range Enumerable #collect Enumerable#collect
enum = Enumerator.new do |y| y.yield 1 y.yield 2 end
p enum.collect { |x| x*x } => [1, 4] Enumerator
enum = Enumerator.new do |y| y.yield 1 y.yield 2 end
enum.collect do |x| x*x end
Enumerator Yielder yields Generator do |y| y.yield 1 y.yield 2
end
Enumerator::Lazy calls each yields Enumerator::Lazy calls each yields my block
my block yields yields
=>[2,5,10,17,26,37,50,65,82,101] (1..Float::INFINITY) .lazy .collect { |x| x*x } .collect {
|x| x+1 } .first(10)
Step 1: Call "each" Lazy Lazy x*x x+1 yield yield
Infinite range first(10) Step 2: yield to the blocks, one at a time
memoization
slow_fib 0 = 0 slow_fib 1 = 1 slow_fib n
= slow_fib (n-2) + slow_fib (n-1) map slow_fib [1..10] => [1,1,2,3,5,8,13,21,34,55] http://www.haskell.org/haskellwiki/Memoization
None
memoized_fib = (map fib [0 ..] !!) where fib 0
= 0 fib 1 = 1 fib n = memoized_fib (n-2) + memoized_fib (n-1) Typical Haskell magic! http://www.haskell.org/haskellwiki/Memoization
(map fib [0 ..] !!) Infinite, lazy list of return
values A curried function to return the requested fib
[0 ..] (0..Float::INFINITY)
map fib [0 ..] (0..Float::INFINITY) .lazy.map {|x| fib(x) }
(map fib [0 ..] !!) cache = (0..Float::INFINITY) .lazy.map {|x|
fib(x) } nth_element_from_list = lambda { |ary, n| ary[n]} nth_fib = nth_element_from_list.curry[cache]
map memoized_fib [1..10] => [1,1,2,3,5,8,13,21,34,55] `block in <main>': undefined method
`[]' for #<Enumerator::Lazy: #<Enumerator::Lazy: 0..Infinity>:map> (NoMethodError)
each Range Enumerable #collect (0..Float::INFINITY) .lazy.map {|x| fib(x) } nth_element_from_list
= lambda { |ary, n| ary[n]}
@cache = {} @cache[1] = 1 @cache[2] = 1 def
memoized_fib(n) @cache[n] ||= memoized_fib(n-1) + memoized_fib(n-2) end
learn by studying other languages... and acquire a different perspective
on Ruby
Ruby has many functional features, but is not a functional
language