Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Functional Programming and Ruby - EuRuKo
Search
Pat Shaughnessy
June 28, 2013
Technology
2
790
Functional Programming and Ruby - EuRuKo
Slides from Athens, June 2013
Pat Shaughnessy
June 28, 2013
Tweet
Share
More Decks by Pat Shaughnessy
See All by Pat Shaughnessy
20000 Leagues Under ActiveRecord
pat_shaughnessy
0
120
Visualizing Garbage Collection in Rubinius, JRuby and Ruby 2.0
pat_shaughnessy
8
720
Functional Programming and Ruby
pat_shaughnessy
6
1.6k
Dissecting a Ruby Block
pat_shaughnessy
10
450
Other Decks in Technology
See All in Technology
TypeScript 6.0で非推奨化されるオプションたち
uhyo
13
4k
入社したばかりでもできる、 アクセシビリティ改善の第一歩
unachang113
2
340
不確実性に備える ABEMA の信頼性設計とオブザーバビリティ基盤
nagapad
4
5.2k
メッセージ駆動が可能にする結合の最適化
j5ik2o
8
1k
雲勉LT_Amazon Bedrock AgentCoreを知りAIエージェントに入門しよう!
ymae
2
190
現地速報!Microsoft Ignite 2025 M365 Copilotアップデートレポート
kasada
2
1.5k
How We Built a Secure Sandbox Platform for AI
flatt_security
1
110
Dev Containers と Skaffold で実現する クラウドネイティブ開発環境 ローカルのみという制約に挑む / Cloud-Native Development with Dev Containers and Skaffold: Tackling the Local-Only Constraint
bitkey
PRO
0
120
FFMとJVMの実装から学ぶJavaのインテグリティ
kazumura
0
150
OSだってコンテナしたい❗Image Modeが切り拓くLinux OS運用の新時代
tsukaman
0
120
AIエージェントによるエンタープライズ向けスライド検索!
shibuiwilliam
4
650
Post-AIコーディング時代のエンジニア生存戦略
shinoyu
0
300
Featured
See All Featured
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
We Have a Design System, Now What?
morganepeng
54
7.9k
Building a Scalable Design System with Sketch
lauravandoore
463
33k
Site-Speed That Sticks
csswizardry
13
970
Optimizing for Happiness
mojombo
379
70k
Testing 201, or: Great Expectations
jmmastey
46
7.8k
A better future with KSS
kneath
239
18k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
Context Engineering - Making Every Token Count
addyosmani
9
410
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Transcript
foo :: Ord a => [a] -> [a] foo []
= [] foo (p:xs) = (foo lesser) ++ [p] ++ (foo greater) where lesser = filter (< p) xs greater = filter (>= p) xs
None
Ruby is a language designed in the following steps: *
take a simple lisp language * add blocks, inspired by higher order functions * add methods found in Smalltalk * add functionality found in Perl So, Ruby was a Lisp originally, in theory. Let's call it MatzLisp from now on. ;-) ! ! ! ! ! ! ! matz.
None
None
None
None
Haskell... is a polymorphically statically typed, lazy, purely functional language,
quite different from most other programming languages. The language is named for Haskell Brooks Curry, ...
- what is “functional programming?” - higher order functions -
lazy evaluation - memoization
None
higher order functions
[1..10] =>[1, 2, 3, 4, 5, 6, 7, 8, 9,
10] (1..10).to_a
[ x*x | x <- [1..10]] (1..10).collect { |x| x*x
} =>[1, 4, 9, 16, 25, 36, 49, 64, 81, 100] (1..10).map { |x| x*x }
None
map (\x -> x*x) [1..10] (1..10).map &lambda { |x| x*x
} =>[1, 4, 9, 16, 25, 36, 49, 64, 81, 100] (1..10).map &(->(x) { x*x })
lazy evaluation
[1..] =>[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28, 29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54, 55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80, 81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,1 05,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123, etc...
take 10 [1..] =>[1,2,3,4,5,6,7,8,9,10]
take 10 [ x+1 | x <- [ x*x |
x <- [1..]]] =>[2,5,10,17,26,37,50,65,82,101]
(1..Float::INFINITY) .lazy .collect { |x| x*x } .collect { |x|
x+1 } .take(10).force =>[2,5,10,17,26,37,50,65,82,101]
=>[2,5,10,17,26,37,50,65,82,101] (1..Float::INFINITY) .lazy .collect { |x| x*x } .collect {
|x| x+1 } .first(10)
(1..10).collect { |x| x*x } each Range Enumerable #collect Enumerable#collect
enum = Enumerator.new do |y| y.yield 1 y.yield 2 end
p enum.collect { |x| x*x } => [1, 4] Enumerator
enum = Enumerator.new do |y| y.yield 1 y.yield 2 end
enum.collect do |x| x*x end
Enumerator Yielder yields Generator do |y| y.yield 1 y.yield 2
end
Enumerator::Lazy calls each yields Enumerator::Lazy calls each yields my block
my block yields yields
=>[2,5,10,17,26,37,50,65,82,101] (1..Float::INFINITY) .lazy .collect { |x| x*x } .collect {
|x| x+1 } .first(10)
Step 1: Call "each" Lazy Lazy x*x x+1 yield yield
Infinite range first(10) Step 2: yield to the blocks, one at a time
memoization
slow_fib 0 = 0 slow_fib 1 = 1 slow_fib n
= slow_fib (n-2) + slow_fib (n-1) map slow_fib [1..10] => [1,1,2,3,5,8,13,21,34,55] http://www.haskell.org/haskellwiki/Memoization
None
memoized_fib = (map fib [0 ..] !!) where fib 0
= 0 fib 1 = 1 fib n = memoized_fib (n-2) + memoized_fib (n-1) Typical Haskell magic! http://www.haskell.org/haskellwiki/Memoization
(map fib [0 ..] !!) Infinite, lazy list of return
values A curried function to return the requested fib
[0 ..] (0..Float::INFINITY)
map fib [0 ..] (0..Float::INFINITY) .lazy.map {|x| fib(x) }
(map fib [0 ..] !!) cache = (0..Float::INFINITY) .lazy.map {|x|
fib(x) } nth_element_from_list = lambda { |ary, n| ary[n]} nth_fib = nth_element_from_list.curry[cache]
map memoized_fib [1..10] => [1,1,2,3,5,8,13,21,34,55] `block in <main>': undefined method
`[]' for #<Enumerator::Lazy: #<Enumerator::Lazy: 0..Infinity>:map> (NoMethodError)
each Range Enumerable #collect (0..Float::INFINITY) .lazy.map {|x| fib(x) } nth_element_from_list
= lambda { |ary, n| ary[n]}
@cache = {} @cache[1] = 1 @cache[2] = 1 def
memoized_fib(n) @cache[n] ||= memoized_fib(n-1) + memoized_fib(n-2) end
learn by studying other languages... and acquire a different perspective
on Ruby
Ruby has many functional features, but is not a functional
language