Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Functional Programming and Ruby - EuRuKo
Search
Pat Shaughnessy
June 28, 2013
Technology
2
760
Functional Programming and Ruby - EuRuKo
Slides from Athens, June 2013
Pat Shaughnessy
June 28, 2013
Tweet
Share
More Decks by Pat Shaughnessy
See All by Pat Shaughnessy
20000 Leagues Under ActiveRecord
pat_shaughnessy
0
120
Visualizing Garbage Collection in Rubinius, JRuby and Ruby 2.0
pat_shaughnessy
8
700
Functional Programming and Ruby
pat_shaughnessy
6
1.4k
Dissecting a Ruby Block
pat_shaughnessy
10
440
Other Decks in Technology
See All in Technology
白金鉱業Meetup_Vol.18_生成AIはデータサイエンティストを代替するのか?
brainpadpr
4
220
Microsoft の SSE の現在地
skmkzyk
0
270
地味にいろいろあった! 2025春のAmazon Bedrockアップデートおさらい
minorun365
PRO
2
550
LT Slide 2025-04-22
takesection
0
110
Oracle Cloud Infrastructure:2025年4月度サービス・アップデート
oracle4engineer
PRO
0
290
生成AIによるCloud Native基盤構築の可能性と実践的ガードレールの敷設について
nwiizo
7
1.4k
バクラクの認証基盤の成長と現在地 / bakuraku-authn-platform
convto
4
880
ビジネスとデザインとエンジニアリングを繋ぐために 一人のエンジニアは何ができるか / What can a single engineer do to connect business, design, and engineering?
kaminashi
2
860
Conquering PDFs: document understanding beyond plain text
inesmontani
PRO
2
440
SREからゼロイチプロダクト開発へ ー越境する打席の立ち方と期待への応え方ー / Product Engineering Night #8
itkq
2
1.1k
MCPが変えるAIとの協働
knishioka
1
120
Linuxのパッケージ管理とアップデート基礎知識
go_nishimoto
1
700
Featured
See All Featured
Embracing the Ebb and Flow
colly
85
4.7k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
Optimising Largest Contentful Paint
csswizardry
37
3.2k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
45
9.5k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.3k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
119
51k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Site-Speed That Sticks
csswizardry
6
520
Visualization
eitanlees
146
16k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
770
Transcript
foo :: Ord a => [a] -> [a] foo []
= [] foo (p:xs) = (foo lesser) ++ [p] ++ (foo greater) where lesser = filter (< p) xs greater = filter (>= p) xs
None
Ruby is a language designed in the following steps: *
take a simple lisp language * add blocks, inspired by higher order functions * add methods found in Smalltalk * add functionality found in Perl So, Ruby was a Lisp originally, in theory. Let's call it MatzLisp from now on. ;-) ! ! ! ! ! ! ! matz.
None
None
None
None
Haskell... is a polymorphically statically typed, lazy, purely functional language,
quite different from most other programming languages. The language is named for Haskell Brooks Curry, ...
- what is “functional programming?” - higher order functions -
lazy evaluation - memoization
None
higher order functions
[1..10] =>[1, 2, 3, 4, 5, 6, 7, 8, 9,
10] (1..10).to_a
[ x*x | x <- [1..10]] (1..10).collect { |x| x*x
} =>[1, 4, 9, 16, 25, 36, 49, 64, 81, 100] (1..10).map { |x| x*x }
None
map (\x -> x*x) [1..10] (1..10).map &lambda { |x| x*x
} =>[1, 4, 9, 16, 25, 36, 49, 64, 81, 100] (1..10).map &(->(x) { x*x })
lazy evaluation
[1..] =>[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28, 29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54, 55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80, 81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,1 05,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123, etc...
take 10 [1..] =>[1,2,3,4,5,6,7,8,9,10]
take 10 [ x+1 | x <- [ x*x |
x <- [1..]]] =>[2,5,10,17,26,37,50,65,82,101]
(1..Float::INFINITY) .lazy .collect { |x| x*x } .collect { |x|
x+1 } .take(10).force =>[2,5,10,17,26,37,50,65,82,101]
=>[2,5,10,17,26,37,50,65,82,101] (1..Float::INFINITY) .lazy .collect { |x| x*x } .collect {
|x| x+1 } .first(10)
(1..10).collect { |x| x*x } each Range Enumerable #collect Enumerable#collect
enum = Enumerator.new do |y| y.yield 1 y.yield 2 end
p enum.collect { |x| x*x } => [1, 4] Enumerator
enum = Enumerator.new do |y| y.yield 1 y.yield 2 end
enum.collect do |x| x*x end
Enumerator Yielder yields Generator do |y| y.yield 1 y.yield 2
end
Enumerator::Lazy calls each yields Enumerator::Lazy calls each yields my block
my block yields yields
=>[2,5,10,17,26,37,50,65,82,101] (1..Float::INFINITY) .lazy .collect { |x| x*x } .collect {
|x| x+1 } .first(10)
Step 1: Call "each" Lazy Lazy x*x x+1 yield yield
Infinite range first(10) Step 2: yield to the blocks, one at a time
memoization
slow_fib 0 = 0 slow_fib 1 = 1 slow_fib n
= slow_fib (n-2) + slow_fib (n-1) map slow_fib [1..10] => [1,1,2,3,5,8,13,21,34,55] http://www.haskell.org/haskellwiki/Memoization
None
memoized_fib = (map fib [0 ..] !!) where fib 0
= 0 fib 1 = 1 fib n = memoized_fib (n-2) + memoized_fib (n-1) Typical Haskell magic! http://www.haskell.org/haskellwiki/Memoization
(map fib [0 ..] !!) Infinite, lazy list of return
values A curried function to return the requested fib
[0 ..] (0..Float::INFINITY)
map fib [0 ..] (0..Float::INFINITY) .lazy.map {|x| fib(x) }
(map fib [0 ..] !!) cache = (0..Float::INFINITY) .lazy.map {|x|
fib(x) } nth_element_from_list = lambda { |ary, n| ary[n]} nth_fib = nth_element_from_list.curry[cache]
map memoized_fib [1..10] => [1,1,2,3,5,8,13,21,34,55] `block in <main>': undefined method
`[]' for #<Enumerator::Lazy: #<Enumerator::Lazy: 0..Infinity>:map> (NoMethodError)
each Range Enumerable #collect (0..Float::INFINITY) .lazy.map {|x| fib(x) } nth_element_from_list
= lambda { |ary, n| ary[n]}
@cache = {} @cache[1] = 1 @cache[2] = 1 def
memoized_fib(n) @cache[n] ||= memoized_fib(n-1) + memoized_fib(n-2) end
learn by studying other languages... and acquire a different perspective
on Ruby
Ruby has many functional features, but is not a functional
language