Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習エンジニアのための新サービス/DeepLens & SageMaker
Search
ryo nakamaru
December 14, 2017
Technology
0
1.1k
機械学習エンジニアのための新サービス/DeepLens & SageMaker
re:Invent2017 で発表された新サービスについて JAWS-UG AI 支部で LT しました
ryo nakamaru
December 14, 2017
Tweet
Share
More Decks by ryo nakamaru
See All by ryo nakamaru
AWSで楽をするサービスメッシュ入門/appmesh-trial
pottava
1
1.5k
reinforce-2019-recap-lt
pottava
2
4.1k
ScaleShift-jp-2019-summer
pottava
1
210
Firecracker とは何か/what is Firecracker
pottava
12
5.4k
ハイブリッド並列 on Kubernetes/hybrid-parallel-program-on-kubernetes
pottava
1
440
AWS Fargate + Code 兄弟で始める継続的デリバリー / Continuous Delivery with AWS Fargate and Code brothers
pottava
12
3.2k
Singularity と NVIDIA GPU Cloud で作る ハイブリッド機械学習環境の構築 / Building a hybrid environment for Machine Learning with Singularity and NGC
pottava
3
1.3k
明日から始めるちょい足し λ / get-started-with-aws-lambda
pottava
4
2.5k
NGC と Singularity によるハイブリッド機械学習環境 / A hybrid environment for Machine Learning with NGC and Singularity
pottava
0
490
Other Decks in Technology
See All in Technology
Railsの限界を超えろ!「家族アルバム みてね」の画像・動画の大規模アップロードを支えるアーキテクチャの変遷
ojima_h
4
500
With Devin -AIの自律とメンバーの自立
kotanin0
2
530
DatabricksのOLTPデータベース『Lakebase』に詳しくなろう!
inoutk
0
150
From Live Coding to Vibe Coding with Firebase Studio
firebasethailand
1
280
メモ整理が苦手な者による頑張らないObsidian活用術
optim
0
140
Amazon CloudWatchのメトリクスインターバルについて / Metrics interval matters
ymotongpoo
3
270
経験がないことを言い訳にしない、 AI時代の他領域への染み出し方
parayama0625
0
240
Wasmで社内ツールを作って配布しよう
askua
0
150
20150719_Amazon Nova Canvas Virtual try-onアプリ 作成裏話
riz3f7
0
140
AIを使っていい感じにE2Eテストを書けるようになるまで / Trying to Write Good E2E Tests with AI
katawara
3
1.8k
ObsidianをLLM時代のナレッジベースに! クリッピング→Markdown→CLI連携の実践
srvhat09
7
9.6k
ecspressoの設計思想に至る道 / sekkeinight2025
fujiwara3
12
2k
Featured
See All Featured
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.2k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
138
34k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
A better future with KSS
kneath
238
17k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
The Language of Interfaces
destraynor
158
25k
Embracing the Ebb and Flow
colly
86
4.8k
Designing Experiences People Love
moore
142
24k
Designing for Performance
lara
610
69k
Mobile First: as difficult as doing things right
swwweet
223
9.7k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
850
Transcript
機械学習エンジニアのための新サービス DeepLens & SageMaker JAWS-UG AI #6 @ Dec 14,
2017 Ryo NAKAMARU, SUPINF Inc. / Rescale, Inc.
Amazon SageMaker
3
SageMaker 4 設計 学習 デプロイ • ワンクリック起動 Jupyter notebook •
プリセットされた 機械学習アルゴリ ズム群 ▶ ▶ • ジョブを定義し 学習開始 • 並列分散学習 • ハイパーパラメタ 最適化 • シンプルな API で モデルをデプロイ • フルマネージドな 推論エンドポイント の提供
SageMaker • 一部機能だけの利用も OK ‣ 設計+学習機能だけ使う ‣ 推論エンドポイントだけ使う etc.. •
抽象度の高い SageMaker API • Docker を使えば学習・推論のカスタマイズも 5
SageMaker API 6 • 学習 from sagemaker import KMeans kmeans
= KMeans(k=10, data_location=s3_data_location, output_path=s3_output_location, train_instance_type='ml.c4.8xlarge', train_instance_count=4, role=execution_iam_role) kmeans.fit(kmeans.record_set(train_set[0]))
SageMaker API • デプロイ 7 predictor = kmeans.deploy(instance_type='ml.m4.xlarge', initial_instance_count=1)
SageMaker API 8 • 推論 result = predictor.predict(valid_set[0][0:100])
SageMaker inference bot 9
AWS DeepLens
11
DeepLens での推論 12 DeepLens raw data Local 動画生データ
DeepLens での推論 13 DeepLens raw data Local results Greengrass Inference
with 推論
DeepLens での推論 14 DeepLens raw data Local results AWS Greengrass
IoT Rule Lambda Inference with MQTT 「ホットドック があったよ」
DeepLens へのデプロイ 15 DeepLens AWS SageMaker Trained by EC2 Model
学習
DeepLens へのデプロイ 16 DeepLens AWS DeepLens SageMaker a project Model
Model モデルを インポート
DeepLens へのデプロイ 17 DeepLens AWS DeepLens a project Model 推論
& AWS IoT 連携の実装
DeepLens へのデプロイ 18 DeepLens AWS Greengrass Inference with DeepLens a
project Model デプローイ
DeepLens • 開発者向けデバイス ‣ 動画を使う深層学習をローカルで手軽に回せる ‣ デバイスへのデプロイもとても簡単! • HD ビデオ
& 秒間 10 億回の浮動小数点数演算能力 • 249 USD で予約受付中(Amazon.com) 19
中丸 良 @pottava • AWS Certified Solutions Architect, DevOps Engineer
- Professional • CTO at SUPINF Inc • Solutions Architect at Rescale, Inc. Profile 20
Containerize your app! 21 • クラウド / コンテナ を強みにした受託開発運用、コンサルティング •
2015 年から Docker の本番運用を開始・豊富な CI / CD 事例 • スピンフ、と読みます・・
Cloud HPC with 22 • クラウド HPC シミュレーションプラットフォームの提供 • 2011
年初頭に設立、Peter Thiel や Microsoft から出資 • スケーラブルなシミュレーションや機械学習を!
ご静聴ありがとうございました :) 参考文献: • AWS re:Invent 2017: Introducing Amazon SageMaker
(MCL365) https://www.youtube.com/watch?v=4pbXdsjZx_k • Amazon SageMaker – 機械学習を加速する | Amazon Web Services ブログ https://aws.amazon.com/jp/blogs/news/amazon-sagemaker/ • Extend AWS DeepLens to Send SMS Notifications with AWS Lambda | AWS AI Blog https://aws.amazon.com/jp/blogs/ai/extend- aws-deeplens-to-send-sms-notifications-with-aws-lambda/