Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介 / Knowledge Tracing with GNN
Search
Atom
December 04, 2020
0
83
文献紹介 / Knowledge Tracing with GNN
文献紹介と書いてあるが自分の用のメモ
公開しなくても良いかなと思ったが公開
Atom
December 04, 2020
Tweet
Share
More Decks by Atom
See All by Atom
文献紹介 / Structure-based Knowledge Tracing: An Influence Propagation View
roraidolaurent
0
82
文献紹介 / Non-Intrusive Parametric Reduced Order Models withHigh-Dimensional Inputs via Gradient-Free Active Subspace
roraidolaurent
0
50
ニューラルネットワークのベイズ推論 / Bayesian inference of neural networks
roraidolaurent
1
2.8k
Graph Convolutional Networks
roraidolaurent
0
220
文献紹介 / A Probabilistic Annotation Model for Crowdsourcing Coreference
roraidolaurent
0
62
文献紹介Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time
roraidolaurent
0
93
文献紹介/ Bayesian Learning for Neural Dependency Parsing
roraidolaurent
0
110
ポッキー数列の加法定理 / Pocky number additon theorem
roraidolaurent
0
200
Scalable Bayesian Learning of Recurrent Neural Networks for Language Modeling
roraidolaurent
1
130
Featured
See All Featured
Unsuck your backbone
ammeep
670
57k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
41
2.2k
RailsConf 2023
tenderlove
30
1.1k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Raft: Consensus for Rubyists
vanstee
137
6.9k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.1k
The World Runs on Bad Software
bkeepers
PRO
67
11k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
23
2.6k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
21k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.2k
Transcript
None
None
∈ , ∈ {0,1}2 ∈ {0,1} ∈ {0,1} + 1
≡ +1 = , , , = 1 , ⋯ , ⊆ × , ∈ ℝ× ∈ ∈ ℝ
None
∈ ℝ2× ∈ ℝ× () ∈ ℝ ∈
, ℎ
None
None
None
None
None
None
☓
None
None
∈ {0,1}
None
None
None
−1 から問題 (スキル をもつ)に正答確率を アテンションで求めるが, と同じスキルをもつ問題(例 )
の正誤情報 は −1 では失われている可能性が大きい. に関連する問題を選択し, その情報 についても アテンションをとる.
None
None
None
None
None
None
None