Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介 / Knowledge Tracing with GNN
Search
Atom
December 04, 2020
0
77
文献紹介 / Knowledge Tracing with GNN
文献紹介と書いてあるが自分の用のメモ
公開しなくても良いかなと思ったが公開
Atom
December 04, 2020
Tweet
Share
More Decks by Atom
See All by Atom
文献紹介 / Structure-based Knowledge Tracing: An Influence Propagation View
roraidolaurent
0
76
文献紹介 / Non-Intrusive Parametric Reduced Order Models withHigh-Dimensional Inputs via Gradient-Free Active Subspace
roraidolaurent
0
47
ニューラルネットワークのベイズ推論 / Bayesian inference of neural networks
roraidolaurent
1
2.7k
Graph Convolutional Networks
roraidolaurent
0
210
文献紹介 / A Probabilistic Annotation Model for Crowdsourcing Coreference
roraidolaurent
0
59
文献紹介Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time
roraidolaurent
0
90
文献紹介/ Bayesian Learning for Neural Dependency Parsing
roraidolaurent
0
98
ポッキー数列の加法定理 / Pocky number additon theorem
roraidolaurent
0
190
Scalable Bayesian Learning of Recurrent Neural Networks for Language Modeling
roraidolaurent
1
120
Featured
See All Featured
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
6
550
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
9
450
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
7
630
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.3k
Building Flexible Design Systems
yeseniaperezcruz
328
38k
Unsuck your backbone
ammeep
669
57k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Faster Mobile Websites
deanohume
306
31k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
21
2.5k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.6k
Large-scale JavaScript Application Architecture
addyosmani
511
110k
Transcript
None
None
∈ , ∈ {0,1}2 ∈ {0,1} ∈ {0,1} + 1
≡ +1 = , , , = 1 , ⋯ , ⊆ × , ∈ ℝ× ∈ ∈ ℝ
None
∈ ℝ2× ∈ ℝ× () ∈ ℝ ∈
, ℎ
None
None
None
None
None
None
☓
None
None
∈ {0,1}
None
None
None
−1 から問題 (スキル をもつ)に正答確率を アテンションで求めるが, と同じスキルをもつ問題(例 )
の正誤情報 は −1 では失われている可能性が大きい. に関連する問題を選択し, その情報 についても アテンションをとる.
None
None
None
None
None
None
None