Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介 / Structure-based Knowledge Tracing: An In...
Search
Atom
May 06, 2021
0
88
文献紹介 / Structure-based Knowledge Tracing: An Influence Propagation View
Atom
May 06, 2021
Tweet
Share
More Decks by Atom
See All by Atom
文献紹介 / Knowledge Tracing with GNN
roraidolaurent
0
92
文献紹介 / Non-Intrusive Parametric Reduced Order Models withHigh-Dimensional Inputs via Gradient-Free Active Subspace
roraidolaurent
0
55
ニューラルネットワークのベイズ推論 / Bayesian inference of neural networks
roraidolaurent
1
2.8k
Graph Convolutional Networks
roraidolaurent
0
230
文献紹介 / A Probabilistic Annotation Model for Crowdsourcing Coreference
roraidolaurent
0
65
文献紹介Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time
roraidolaurent
0
96
文献紹介/ Bayesian Learning for Neural Dependency Parsing
roraidolaurent
0
120
ポッキー数列の加法定理 / Pocky number additon theorem
roraidolaurent
0
210
Scalable Bayesian Learning of Recurrent Neural Networks for Language Modeling
roraidolaurent
1
140
Featured
See All Featured
Measuring & Analyzing Core Web Vitals
bluesmoon
7
490
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.1k
Designing Experiences People Love
moore
142
24k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
790
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.7k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.8k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Side Projects
sachag
455
42k
Art, The Web, and Tiny UX
lynnandtonic
299
21k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.3k
Speed Design
sergeychernyshev
32
1k
Designing for humans not robots
tammielis
253
25k
Transcript
None
2
3
4
5
6
7
8
9
10 𝒙𝑡 = 𝑒𝑡 = 0に回答して不正解? 𝑒𝑡 = 0に回答して正解? 𝑒𝑡
= 1に回答して不正解? ⋮ 関係r ごとに埋め込み 関係r に関する一時的に用いる特徴量 注)ℎ𝑖 𝑡 ← ℎ 𝑖 𝑡,𝑇と更新されない.
11 𝑝𝑎𝑟𝑡𝑖𝑗 𝑟
12
13
14
15
16
17
18
19
20
21
22
23 1ステップのみの学習で得られた 影響ベクトル 𝐽𝑖 ∈ ℝ+𝑁として 概念間の影響ベクトルのコサイン類似度が 0.5以上のものにエッジを引いてクラスタリング
24
25