Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介 / Structure-based Knowledge Tracing: An In...
Search
Atom
May 06, 2021
0
89
文献紹介 / Structure-based Knowledge Tracing: An Influence Propagation View
Atom
May 06, 2021
Tweet
Share
More Decks by Atom
See All by Atom
文献紹介 / Knowledge Tracing with GNN
roraidolaurent
0
93
文献紹介 / Non-Intrusive Parametric Reduced Order Models withHigh-Dimensional Inputs via Gradient-Free Active Subspace
roraidolaurent
0
55
ニューラルネットワークのベイズ推論 / Bayesian inference of neural networks
roraidolaurent
1
2.8k
Graph Convolutional Networks
roraidolaurent
0
230
文献紹介 / A Probabilistic Annotation Model for Crowdsourcing Coreference
roraidolaurent
0
67
文献紹介Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time
roraidolaurent
0
100
文献紹介/ Bayesian Learning for Neural Dependency Parsing
roraidolaurent
0
120
ポッキー数列の加法定理 / Pocky number additon theorem
roraidolaurent
0
210
Scalable Bayesian Learning of Recurrent Neural Networks for Language Modeling
roraidolaurent
1
140
Featured
See All Featured
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
BBQ
matthewcrist
89
9.7k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Docker and Python
trallard
44
3.5k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
46
9.6k
For a Future-Friendly Web
brad_frost
179
9.8k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
107
19k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
960
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
The Pragmatic Product Professional
lauravandoore
35
6.7k
The Cult of Friendly URLs
andyhume
79
6.5k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
5.9k
Transcript
None
2
3
4
5
6
7
8
9
10 𝒙𝑡 = 𝑒𝑡 = 0に回答して不正解? 𝑒𝑡 = 0に回答して正解? 𝑒𝑡
= 1に回答して不正解? ⋮ 関係r ごとに埋め込み 関係r に関する一時的に用いる特徴量 注)ℎ𝑖 𝑡 ← ℎ 𝑖 𝑡,𝑇と更新されない.
11 𝑝𝑎𝑟𝑡𝑖𝑗 𝑟
12
13
14
15
16
17
18
19
20
21
22
23 1ステップのみの学習で得られた 影響ベクトル 𝐽𝑖 ∈ ℝ+𝑁として 概念間の影響ベクトルのコサイン類似度が 0.5以上のものにエッジを引いてクラスタリング
24
25