Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介 / Structure-based Knowledge Tracing: An In...
Search
Atom
May 06, 2021
0
82
文献紹介 / Structure-based Knowledge Tracing: An Influence Propagation View
Atom
May 06, 2021
Tweet
Share
More Decks by Atom
See All by Atom
文献紹介 / Knowledge Tracing with GNN
roraidolaurent
0
83
文献紹介 / Non-Intrusive Parametric Reduced Order Models withHigh-Dimensional Inputs via Gradient-Free Active Subspace
roraidolaurent
0
50
ニューラルネットワークのベイズ推論 / Bayesian inference of neural networks
roraidolaurent
1
2.8k
Graph Convolutional Networks
roraidolaurent
0
220
文献紹介 / A Probabilistic Annotation Model for Crowdsourcing Coreference
roraidolaurent
0
62
文献紹介Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time
roraidolaurent
0
93
文献紹介/ Bayesian Learning for Neural Dependency Parsing
roraidolaurent
0
110
ポッキー数列の加法定理 / Pocky number additon theorem
roraidolaurent
0
200
Scalable Bayesian Learning of Recurrent Neural Networks for Language Modeling
roraidolaurent
1
130
Featured
See All Featured
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
5
550
The Pragmatic Product Professional
lauravandoore
33
6.5k
Unsuck your backbone
ammeep
670
57k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
52
2.4k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Fireside Chat
paigeccino
37
3.4k
Testing 201, or: Great Expectations
jmmastey
42
7.5k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
13
1.4k
Optimizing for Happiness
mojombo
377
70k
Practical Orchestrator
shlominoach
186
11k
How to Ace a Technical Interview
jacobian
276
23k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
23
2.6k
Transcript
None
2
3
4
5
6
7
8
9
10 𝒙𝑡 = 𝑒𝑡 = 0に回答して不正解? 𝑒𝑡 = 0に回答して正解? 𝑒𝑡
= 1に回答して不正解? ⋮ 関係r ごとに埋め込み 関係r に関する一時的に用いる特徴量 注)ℎ𝑖 𝑡 ← ℎ 𝑖 𝑡,𝑇と更新されない.
11 𝑝𝑎𝑟𝑡𝑖𝑗 𝑟
12
13
14
15
16
17
18
19
20
21
22
23 1ステップのみの学習で得られた 影響ベクトル 𝐽𝑖 ∈ ℝ+𝑁として 概念間の影響ベクトルのコサイン類似度が 0.5以上のものにエッジを引いてクラスタリング
24
25