Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介 / Structure-based Knowledge Tracing: An In...
Search
Atom
May 06, 2021
0
76
文献紹介 / Structure-based Knowledge Tracing: An Influence Propagation View
Atom
May 06, 2021
Tweet
Share
More Decks by Atom
See All by Atom
文献紹介 / Knowledge Tracing with GNN
roraidolaurent
0
77
文献紹介 / Non-Intrusive Parametric Reduced Order Models withHigh-Dimensional Inputs via Gradient-Free Active Subspace
roraidolaurent
0
47
ニューラルネットワークのベイズ推論 / Bayesian inference of neural networks
roraidolaurent
1
2.7k
Graph Convolutional Networks
roraidolaurent
0
210
文献紹介 / A Probabilistic Annotation Model for Crowdsourcing Coreference
roraidolaurent
0
59
文献紹介Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time
roraidolaurent
0
90
文献紹介/ Bayesian Learning for Neural Dependency Parsing
roraidolaurent
0
98
ポッキー数列の加法定理 / Pocky number additon theorem
roraidolaurent
0
190
Scalable Bayesian Learning of Recurrent Neural Networks for Language Modeling
roraidolaurent
1
120
Featured
See All Featured
GraphQLとの向き合い方2022年版
quramy
44
13k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Fontdeck: Realign not Redesign
paulrobertlloyd
83
5.4k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
46
2.3k
Code Review Best Practice
trishagee
67
18k
For a Future-Friendly Web
brad_frost
176
9.5k
How STYLIGHT went responsive
nonsquared
98
5.4k
A designer walks into a library…
pauljervisheath
205
24k
It's Worth the Effort
3n
184
28k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
29
1k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
7k
Transcript
None
2
3
4
5
6
7
8
9
10 𝒙𝑡 = 𝑒𝑡 = 0に回答して不正解? 𝑒𝑡 = 0に回答して正解? 𝑒𝑡
= 1に回答して不正解? ⋮ 関係r ごとに埋め込み 関係r に関する一時的に用いる特徴量 注)ℎ𝑖 𝑡 ← ℎ 𝑖 𝑡,𝑇と更新されない.
11 𝑝𝑎𝑟𝑡𝑖𝑗 𝑟
12
13
14
15
16
17
18
19
20
21
22
23 1ステップのみの学習で得られた 影響ベクトル 𝐽𝑖 ∈ ℝ+𝑁として 概念間の影響ベクトルのコサイン類似度が 0.5以上のものにエッジを引いてクラスタリング
24
25