Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
A perfect Storm for legacy migration
Search
ryan lemmer
October 21, 2013
Programming
0
1.6k
A perfect Storm for legacy migration
EuroClojure 2013 - Berlin
ryan lemmer
October 21, 2013
Tweet
Share
More Decks by ryan lemmer
See All by ryan lemmer
Modern Haskell: making sense of the type system
ryanlemmer
1
530
Distributed Computation: dealing with Time and Failure in the wild
ryanlemmer
0
790
Other Decks in Programming
See All in Programming
パスキーのすべて / 20250324 iddance Lesson.5
kuralab
0
150
フロントエンドテストの育て方
quramy
11
2.9k
AIコードエディタの基盤となるLLMのFlutter性能評価
alquist4121
0
200
DataStoreをテストする
mkeeda
0
280
5年間継続して開発した自作OSSの記録
bebeji_nappa
0
170
サービスレベルを管理してアジャイルを加速しよう!! / slm-accelerate-agility
tomoyakitaura
1
170
リストビュー画面UX改善の振り返り
splcywolf
0
130
小田原でみんなで一句詠みたいな #phpcon_odawara
stefafafan
0
320
PHPで書いたAPIをGoに書き換えてみた 〜パフォーマンス改善の可能性を探る実験レポート〜
koguuum
0
140
remix + cloudflare workers (DO) docker上でいい感じに開発する
yoshidatomoaki
0
130
SwiftUI API Design Lessons
niw
1
260
Day0 初心者向けワークショップ実践!ソフトウェアテストの第一歩
satohiroyuki
0
830
Featured
See All Featured
Site-Speed That Sticks
csswizardry
5
480
Scaling GitHub
holman
459
140k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.1k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
9
740
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
41
2.2k
Mobile First: as difficult as doing things right
swwweet
223
9.6k
Bash Introduction
62gerente
611
210k
GitHub's CSS Performance
jonrohan
1030
460k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
13
660
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.2k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
Transcript
@ryanlemmer a perfect storm for legacy migration CAPE TOWN @clj_ug_ct
legacy monolith Customer Accounting Billing Product Catalog CRM ... MySQL
Ruby on Rails
legacy Billing Run Customer Accounting Billing Product Catalog CRM ...
Bank Recon MySQL Ruby Ruby
legacy backlog bugs
legacy replacement replace this
legacy replacement replace substitute something that is broken, old or
inoperative
the “legacy problem” can’t fix bugs can’t add features not
performant
a “legacy solution” immutable It’s just too risky to do
in-situ changes
a “legacy solution” vintage the grapes or wine produced in
a particular season
The situation It’s not broken, just Immutable It’s valuable vintage
- still generating revenue We don’t need to “replace” We need to “make the Legacy Problem go away”
vintage migration vintage ?
vintage migration vintage We chose to migrate “financial” parts first
because it posed the highest risk to the business ?
vintage migration vintage statements MySQL Mongo & Redis
feeding off vintage vintage clients invoices ... ...
feeding off vintage statements clients invoices ? ... ...
feeding off vintage clients invoices transform old client write new
client write new invoice transform old invoice ... ...
... ... migration bridge statemen tage Big Run every night
+ incremental run every 10 mins Bridge is one-directional, Statements is read-only Imperative, sequential code
... ... new migration ? full text search stateme vintage
bridge
migration bridge: search clients invoices index- entity index-field index-field index-field
index-field index-field contacts ... ... ...
migration bridge clients invoices index-field index-field index-field index-field index-field write
client write invoice contacts index- entity search statements transform client transform invoice ... ... ... clients invoices ... ... }
... ... ... statements age search statements (batched) bridge search
About 10 million rows several hours to migrate sequentially
first pass solution Batched data migration BUT WHAT NEXT? it
was the easiest thing to do it is not performant not fault tolerant fragile because of data dependencies go parallel and distributed have fault tolerance go real-time served as scaffolding for the next solution
storm Apache Thrift + Nimbus Ingredients: Zookeeper Clojure (> 50%)
* suitable for polyglots
... storm - spouts clients index-field index-field index-field index-field index-field
write client index- entity transform client ... clients
... storm - spout SPOUT TUPLE
storm - data model TUPLE named list of values [“seekoei”
7] [“panda” 10] [147 {:name ‘John’ ...}] [253 {:name ‘Mary’ ...}] word frequency ID client
... storm - spout a SPOUT emits TUPLES UNBOUNDED STREAM
of TUPLES continuously over time a SPOUT is an
... storm - client spout [“client” {:id 147, ...}] CLIENT
SPOUT CLIENT TUPLE periodically emits a entity values
clojure spout (defspout client-‐spout ["entity" “values”] [conf context collector]
(let [next-‐client (next-‐legacy-‐client) tuple [“client” next-‐client]] (spout (nextTuple [] (Thread/sleep 100) (emit-‐spout! collector tuple)) (ack [id])))) creates a pulse
clojure spout (defspout client-‐spout ["entity" “values”] [conf context collector]
(let [next-‐client (next-‐legacy-‐client) tuple [“client” next-‐client]] (spout (nextTuple [] (Thread/sleep 100) (emit-‐spout! collector tuple)) (ack [id]))))
clojure spout [“client” {:id 147, ...}] CLIENT TUPLE (defspout client-‐spout
["entity" “values”] [conf context collector] (let [next-‐client (next-‐legacy-‐client) tuple [“client” next-‐client]] (spout (nextTuple [] (Thread/sleep 100) (emit-‐spout! collector tuple)) (ack [id])))) TUPLE SCHEMA
... storm - spout [“client” {:id 147, ...}] [“client” {:id
201, ...}] [“client” {:id 407, ...}] [“client” {:id 101, ...}] The client SPOUT packages input and emits TUPLES continuously over time
... storm - bolts transform client CLIENT SPOUT BOLT
storm - bolts (defbolt transform-‐client-‐bolt ["client"]
{:prepare true} [conf context collector] (bolt (execute [tuple] (let [h (.getValue tuple 1)] (emit-‐bolt! collector [(transform-‐tuple h)]) (ack! collector tuple)))))
storm - bolts [{:id 147, ...}] OUTGOING TUPLE [“client” {:id
147, ...}] INCOMING TUPLE (defbolt transform-‐client-‐bolt ["client"] {:prepare true} [conf context collector] (bolt (execute [tuple] (let [h (.getValue tuple 1)] (emit-‐bolt! collector [(transform-‐tuple h)]) (ack! collector tuple)))))
storm - topology (topology {"1" (spout-‐spec (client-‐spout)
:p 1)} {"2" (bolt-‐spec {"1" :shuffle} transform-‐client-‐bolt :p 1)})) 1 2 ...
storm - topology (topology {"1" (spout-‐spec (client-‐spout)
:p 1)} {"2" (bolt-‐spec {"1" :shuffle} transform-‐client-‐bolt :p 1)})) 1 2 ...
bolt tasks (topology {"1" (spout-‐spec (client-‐spout)
:p 1)} {"2" (bolt-‐spec {"1" :shuffle} transform-‐client-‐bolt :p 1)})) 1 2 ...
bolt tasks (topology {"1" (spout-‐spec (client-‐spout)
:p 1)} {"2" (bolt-‐spec {"1" :shuffle} transform-‐client-‐bolt :p 3)})) 1 2 ...
which task? (topology {"1" (spout-‐spec (client-‐spout)
:p 1)} {"2" (bolt-‐spec {"1" :shuffle} transform-‐client-‐bolt :p 3)})) 1 2 ? ...
grouping - “shuffle” (topology {"1" (spout-‐spec (client-‐spout)
:p 1)} {"2" (bolt-‐spec {"1" :shuffle} transform-‐client-‐bolt :p 3)})) 1 2 ...
grouping - “ field” 1 2 ... [“active” {:id 147,
...}] [12 {:inv-id 147, ...}] TUPLE SCHEMA ["client-‐id" “invoice-‐vals”] count invoices per client (in memory)
grouping - “ field” 1 2 ... [“active” {:id 147,
...}] [12 {:inv-id 147, ...}] [“active” {:id 147, ...}] [“active” {:id 147, ...}] [401 {:inv-id 32, ...}] [“active” {:id 147, ...}] [“active” {:id 147, ...}] [232 {:inv-id 45, ...}] TUPLE SCHEMA ["client-‐id" “invoice-‐vals”] group by field “client-id”
grouping - “ field” (topology {"1" (spout-‐spec (client-‐spout)
:p 1)} {"2" (bolt-‐spec {"1" [“client-‐id”]} transform-‐client-‐bolt :p 3)})) 1 2 ...
grouping - “ field” 1 2 ... [“active” {:id 147,
...}] [12 {:inv-id 147, ...}] [“active” {:id 147, ...}] [“active” {:id 147, ...}] [401 {:inv-id 32, ...}] [“active” {:id 147, ...}] [“active” {:id 147, ...}] [232 {:inv-id 45, ...}] 2 2 similar “client-id” vals go to the same Bolt Task
grouping - “ field” ... field compute aggregation
bridge - topology index-field write client write invoice index- fields
transform client transform invoice ... ... ... clients invoices contacts
storm - failure success! oops! a failure! ...
storm reliability Build a tree of tuples so that Storm
knows which tuples are related ack/fail Spouts + Bolts
storm guarantees Storm will re-process the entire tuple tree on
failure First attempt fails Storm retries the tuple tree until it succeeds
failure + idempotency write client transform client x2 x2 side-effects!
...
transactional topologies write client transform client x1 x1 run-once semantics
... strong ordering on data processing Storm Trident
search statements storm topologies real-time bridge age
topology design ... ... ...
topology design ... ... ... design the (directed) graph
grouping + parallelism index-field write client write invoice index- fields
transform client transform invoice :shuffle :shuffle :shuffle :shuffle :shuffle :shuffle :p 1 :p 1 :p 1 :p 10 :p 3 :p 3 ... ... ... tune the runtime by annotating the graph edges
topology - tuple schema [“client”] [“entity” “values”] [“invoice”] [“entity” “values”]
[“entity” “values”] [“client”] [“invoice”] [“key_val_pairs”] [“key_val”] We are actually processing streams of tuples continuously
ntage topology design clients context sales context billing context (queue)
(queue) .. .. .. .. .. ..
storm “real-time, distributed, fault-tolerant, computation system” stream processing realtime analytics
continuous computation distributed RPC ...
reflections
search statements age storm topologies vintage is first- class
search statements age storm topologies transform data
search statements age storm topologies not code refactor if you
can! (but only if it’s worth the effort)
search statements age storm topologies not a picnic because we’re
still replacing code and now we’ve added replication
but worth it Big Replace Smaller replacements In-situ changes Augment:
new alongside old Replace Evolve new Kill Starve (until irrelevant)
EUROCLOJURE Berlin 2013 thanks