2015:Sparkによるリアルタイムレコメンド 2015/09 Developers Summit 2015 FUKUOKA:Kafka・HBaseによるビッグデータ収集 2015/11 Cloudera World Tokyo 2015:Spark+Kafkaを使ったアーキテクチャ説明 2016/02 Hadoop / Spark Conference Japan 2016:Hive on Sparkを活用した高速データ分析 2016/06 IBM Datapalooza Tokyo:DMM.comにおけるビッグデータ処理のためのSQL活用術 2016/11 Cloudera World Tokyo 2016:Deep Learningを用いた類似画像レコメンド DMM.comラボとIDCフロンティア、コンテンツレコメンドの精度向上を共同検証 https://www.idcf.jp/pressrelease/2017/20170516001.html Sparkを活用したアジアパシフィック初のレコメンド基盤実現 http://www.cloudera.co.jp/customers/dmm.html
様々なデータソースに対応 異なるデータソースであってもJOIN可能 例) HiveとRDBにあるデータをクエリでJOIN Prestoとは何か ref. Presto: Interacting with petabytes of data at Facebook https://www.facebook.com/notes/facebook-engineering/presto-interacting-with-petabytes-of-data-at-facebook/10151786197628920