Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Jeremy Taylor

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.

Jeremy Taylor

Avatar for SAM Conference 2017

SAM Conference 2017

July 03, 2017
Tweet

More Decks by SAM Conference 2017

Other Decks in Research

Transcript

  1. . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Methods Comparison Simulation Study Data Application Discussion Dynamic prediction of event times using longitudinal data Jeremy M.G. Taylor, Krithika Suresh, Alexander Tsodikov Dept of Biostatistics, University of Michigan 3 July 2017 Jeremy Taylor (Dept of Biostatistics, University of Michigan) 3 July 2017 1 / 37
  2. . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Methods Comparison Simulation Study Data Application Discussion Dynamic Prediction “At time τ after treatment what is the probability that this patient will be alive 5 years from now, given what we know about them ?” • During follow-up, additional information becomes available for the patient (biomarker measurements, intermediate event) • Dynamic prediction aims to incorporate this new information to predict survival probabilities at timepoint τ Jeremy Taylor (Dept of Biostatistics, University of Michigan) 3 July 2017 2 / 37
  3. . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Methods Comparison Simulation Study Data Application Discussion Computing dynamic predictions Dynamic prediction Prob. of surviving up to time τ + s given patient survived up to time τ: pj (τ + s|τ) = Pr(Tj ≥ τ + s|Tj > τ, Dn, Zj (τ), Xj ) • Tj : event time • Xj : baseline covariate vector • Zj : longitudinal marker vector, with value Z(τ) at time τ • Dn = {T∗ i , δi , Xi , Zi ; i = 1, . . . , n}: observed data • T∗ i : observed event time; δi : censoring indicator • For τ∗ > τ, new prediction pj (τ∗ + s|τ∗) conditional on Z(τ∗) • landmark time (τ): prediction time of interest • prediction window s Jeremy Taylor (Dept of Biostatistics, University of Michigan) 3 July 2017 3 / 37
  4. . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Methods Comparison Simulation Study Data Application Discussion Example • Binary time-dependent covariate, Z(t) • Simplest possible longitudinal variable • Z(0) = 0 • Transitions from Z = 1 to Z = 0 are not possible • Example from prostate cancer • T = time to death after treatment • Z(t) = 0 means metastatic cancer has not appeared by time t • Z(t) = 1 means metastatic cancer appeared before time t Jeremy Taylor (Dept of Biostatistics, University of Michigan) 3 July 2017 4 / 37
  5. . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Methods Comparison Simulation Study Data Application Discussion Dynamic Prediction: Example p(τ1 + 5|τ1 ) = Pr(T ≥ τ1 + 5|T > τ1 , Z(τ1 ) = 0, X) τ1 + 5 X τ1 = 0 ? Z(τ1 ) = 0 M sm ts Z(τ) 0 1 s = 5 years M ets M ets Jeremy Taylor (Dept of Biostatistics, University of Michigan) 3 July 2017 5 / 37
  6. . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Methods Comparison Simulation Study Data Application Discussion Dynamic Prediction: Example τ2 + 5 Z(τ) 0 1 M ets M ets X τ1 = 0 Z(τ1 ) = 0 M sm ts τ2 = 2 Z(τ2 ) = 1 M sm ts ? s = 5 years p(τ2 + 5|τ2 ) = Pr(T ≥ τ2 + 5|T > τ2 , Z(τ2 ) = 1, X) Jeremy Taylor (Dept of Biostatistics, University of Michigan) 3 July 2017 6 / 37
  7. . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Methods Comparison Simulation Study Data Application Discussion Landmark Models 0.00 0.25 0.50 0.75 1.00 0 1 2 Landmark time Predicted 5−Year Conditional Survival Jeremy Taylor (Dept of Biostatistics, University of Michigan) 3 July 2017 7 / 37
  8. . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Methods Comparison Simulation Study Data Application Discussion Methods for Dynamic Prediction 1 Joint Modeling • Taylor et al., (2005, 2013); Rizopoulos et al., (2011, 2013) 2 Landmarking • van Houwelingen (2007), Zheng and Heagerty (2005) • Aim: Compare these two approaches in the context of data with binary Z, (i.e. data from an illness-death model) Jeremy Taylor (Dept of Biostatistics, University of Michigan) 3 July 2017 8 / 37
  9. . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Methods Comparison Simulation Study Data Application Discussion Joint Modeling • Specification of two linked models (i) Model for the longitudinal marker process (Z) (ii) Model for the survival outcome with dependence on the marker process (T|Z) • Obtain the joint distribution of the marker process and failure time • Estimate the parameters of the joint model • Compute required conditional survival probabilities • An illness-death model is an example of a joint model, with binary Z Jeremy Taylor (Dept of Biostatistics, University of Michigan) 3 July 2017 9 / 37
  10. . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Methods Comparison Simulation Study Data Application Discussion Illness-Death Model • Binary marker process: Z(τ) ∈ {0, 1} • T: time to death ⇒ Illness-Death Model 0 1 2 λ01 (t|X) λ12 (t|X) λ02 (t|X) Healthy Illness Dead Pr(T ≥ τ + s|T > τ, Z(τ) = 1, X) Pr(T ≥ τ + s|T > τ, Z(τ) = 0, X) Jeremy Taylor (Dept of Biostatistics, University of Michigan) 3 July 2017 10 / 37
  11. . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Methods Comparison Simulation Study Data Application Discussion Dynamic Prediction under Joint Modeling • Obtain prediction by integrating over all possible paths the marker process can take Pr(T ≥ τ + s|T > τ, X, Z(τ) = 1) = (Prob. of staying in illness state until time τ + s exp { − ∫ τ+s τ λ12(u|X) du } Pr(T ≥ τ + s|T > τ, X, Z(τ) = 0) = (Prob. of staying in healthy state from τ to τ + s) exp { − ∫ τ+s τ λ02(u|X) + λ01(u|X) du } + (Prob. of transitioning to illness at time v ∈ (τ, τ + s) and staying there until τ + s) + ∫ τ+s τ exp { − ∫ v τ λ02(u|X) + λ01(u|X) du } λ01(v|X) exp { − ∫ τ+s v λ12(u|X) du } dv Jeremy Taylor (Dept of Biostatistics, University of Michigan) 3 July 2017 11 / 37
  12. . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Methods Comparison Simulation Study Data Application Discussion Landmarking • An approximate approaches that only specifies a model for the desired residual time distribution • Pre-select a landmark time τ and prediction window s • Could select all patients in the database that are alive at τ and estimate the probability of survival at τ + s using a survival model • With multiple landmark times τ1, τ2, . . ., we create a prediction landmark data set at each landmark time τi with individuals who are still alive at time τi Jeremy Taylor (Dept of Biostatistics, University of Michigan) 3 July 2017 12 / 37
  13. . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Methods Comparison Simulation Study Data Application Discussion The whole data From R. Keogh slides (Sir David Coxs 90th Birthday Symposium) Jeremy Taylor (Dept of Biostatistics, University of Michigan) 3 July 2017 13 / 37
  14. . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Methods Comparison Simulation Study Data Application Discussion Landmark time 1 for the whole data Images from R. Keogh slides (Sir David Cox’s 90th Birthday Symposium) Jeremy Taylor (Dept of Biostatistics, University of Michigan) 3 July 2017 14 / 37
  15. . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Methods Comparison Simulation Study Data Application Discussion Landmark Dataset 1 Jeremy Taylor (Dept of Biostatistics, University of Michigan) 3 July 2017 15 / 37
  16. . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Methods Comparison Simulation Study Data Application Discussion Landmark Models • Create a data set for each landmark time τi with patients who are still alive at time τi and administrative censoring at time τi + s • Landmark data sets are stacked to create a “super data set” • Every subject must have a value of Z at each landmark time, may require imputation of Z • Last Observation Carried Forward • A longitudinal model for Z • A local average Jeremy Taylor (Dept of Biostatistics, University of Michigan) 3 July 2017 16 / 37
  17. . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Methods Comparison Simulation Study Data Application Discussion Landmark Models Basic landmark models: stratified h(t|τ, Z(τ), X) = h0τ (t) exp{βZ(τ) + ζ′X} h(t|τ, Z(τ), X) = h0τ (t) exp{βτ Z(τ) + ζ′X} Super landmark model h(t|τ, Z(τ), X) = h0τ (t) exp{β(τ)Z(τ) + ζ′X} Extended super model h(t|τ, Z(τ), X) = h0(t) exp{θ(τ) + β(τ)Z(τ) + ζ′X} β(τ) and θ(τ) are smooth functions. Jeremy Taylor (Dept of Biostatistics, University of Michigan) 3 July 2017 17 / 37
  18. . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Methods Comparison Simulation Study Data Application Discussion Dynamic prediction under Landmarking • Make predictions by obtaining the empirical distribution of failure times Pr(T ≥ τ + s|T ≥ τ, X, Z(τ)) = exp [ − ∫ τ+s τ h(u|τ, Z(τ), X)du ] Jeremy Taylor (Dept of Biostatistics, University of Michigan) 3 July 2017 18 / 37
  19. . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Methods Comparison Simulation Study Data Application Discussion Comparison of Joint Modeling and Landmarking • Joint modeling makes prediction by integrating over paths of the marker process • Landmarking uses empirical distribution of failure times • Landmarking deliberately avoids specifying the distribution of the stochastic marker process Jeremy Taylor (Dept of Biostatistics, University of Michigan) 3 July 2017 19 / 37
  20. . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Methods Comparison Simulation Study Data Application Discussion Landmarking and the consistency condition • Landmarking violates consistency condition (Jewell and Nielsen, 1993) • Predictions from time τ must be compatible with predictions from time τ + ω, they are linked by the evolution of the stochastic process between τ and τ + ω Valid prediction functions require the definition of (i) a model for the stochastic marker process and (ii) the functional relationship between the marker and the hazard at any given time Jeremy Taylor (Dept of Biostatistics, University of Michigan) 3 July 2017 20 / 37
  21. . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Methods Comparison Simulation Study Data Application Discussion The hazard function used in Landmarking • • Landmarking models typically assume the structure of a Cox regression model • Landmarking fails to produce consistent predictions ⇒ theoretically incorrect models Jeremy Taylor (Dept of Biostatistics, University of Michigan) 3 July 2017 21 / 37
  22. . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Methods Comparison Simulation Study Data Application Discussion Illness-Death Model Pr(T ≥ τ + s|T > τ, X, Z(τ) = 0) = exp { − ∫ τ+s τ λ02(u|X) + λ01(u|X) du } + ∫ τ+s τ exp { − ∫ v τ λ02(u|X) + λ01(u|X) du } λ01(v|X) exp { − ∫ τ+s v λ12(u|X) du } dv (1) Pr(T ≥ τ + s|T > τ, X, Z(τ) = 1) = exp { − ∫ τ+s τ λ12(u|X) du } Jeremy Taylor (Dept of Biostatistics, University of Michigan) 3 July 2017 22 / 37
  23. . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Methods Comparison Simulation Study Data Application Discussion Landmark Cox model under an IDM • Simple Cox regression model in the landmark framework is not compatible with an IDM h(t|τ, Z(τ), X) = h0(t|τ) exp { β(τ)Z(τ) + ζ′X } =⇒ β(τ) + ζ′X = log [− log {Eq.(1)}] − log {∫ τ+s τ λ12(u|X) du } Jeremy Taylor (Dept of Biostatistics, University of Michigan) 3 July 2017 23 / 37
  24. . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Methods Comparison Simulation Study Data Application Discussion Landmark Cox model under an IDM • β(τ) contains Eq.(1), which has a complicated form • Depends on both τ and s • Baseline covariates are not a linear function of X and can have differential effects for the different transitions • Simple landmark Cox model with non-proportional hazards is not correct Jeremy Taylor (Dept of Biostatistics, University of Michigan) 3 July 2017 24 / 37
  25. . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Methods Comparison Simulation Study Data Application Discussion Simulation Study • Aims: • Compare the predictive performance of joint and landmarking models • Evaluate whether increased landmark model flexibility provides a better approximation to the true model • Data generated from an illness death model • Essentially impossible to generate data from a sensible landmark model Jeremy Taylor (Dept of Biostatistics, University of Michigan) 3 July 2017 25 / 37
  26. . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Methods Comparison Simulation Study Data Application Discussion Landmark Models Landmark Models h(t|τ, Z(τ), X) = h0(t) exp{θ(τ) + β(τ)Z(τ) + ζX} (LM2) h(t|τ, Z(τ), X) = h0(t) exp{θ(τ) + β(τ)Z(τ) + ω(t − τ)Z(τ) + ζX} (LM4) h(t|τ, Z(τ), X) = h0(t) exp{θ(τ) + β(τ)Z(τ) + ζ′X + ϕ′XZ(τ)} (LM2Int) where β(τ) = β0 + β1τ + β2τ2, θ(τ) = θ1τ + θ2τ2, ω(s) = ω1s + ω2s2. Jeremy Taylor (Dept of Biostatistics, University of Michigan) 3 July 2017 26 / 37
  27. . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Methods Comparison Simulation Study Data Application Discussion Performance Comparison Metrics Predicted Probability Pr(T ≤ τ + s|T > τ, Z(τ), X) • Bias • Variance • AUC(τ, s) • R2(τ, s), where R2(τ, s) = 1 − BS(τ, s)/BS0(τ, s) Jeremy Taylor (Dept of Biostatistics, University of Michigan) 3 July 2017 27 / 37
  28. . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Methods Comparison Simulation Study Data Application Discussion Summary of Simulation Results • Joint modeling performs better than landmarking • Differences in Variance, AUC and R2 can be quite small • Absolute bias can be quite high for landmark model • Simple stratified landmark models usually perform similarly to those that were extended to allow different time scales • Interactions between baseline covariates and marker process improve landmark model approximation Jeremy Taylor (Dept of Biostatistics, University of Michigan) 3 July 2017 28 / 37
  29. . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Methods Comparison Simulation Study Data Application Discussion Prostate cancer study • Prostate cancer study conducted at the University of Michigan • 745 patients with clinically localized prostate cancer treated with radiation therapy • Goal: Produce dynamic predictions of risk of death within 5 years • Measure time from start of treatment • Metastatic clinical failure (CF) is our time-dependent binary covariate (continuously observed) • Pretreatment prognostic factors: age, log-transformed PSA, Gleason score, prostate cancer stage, and comorbidities • Landmark times τ = 0, 1, . . . , 8 years Jeremy Taylor (Dept of Biostatistics, University of Michigan) 3 July 2017 29 / 37
  30. . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Methods Comparison Simulation Study Data Application Discussion Predicted probabilities 0.00 0.25 0.50 0.75 1.00 0 1 2 3 4 5 6 7 8 9 10 Landmark time Probability of death Model LM4 LM4Int MM MMCox 0.00 0.25 0.50 0.75 1.00 0 1 2 3 4 5 Landmark time Probability of death Model LM4 LM4Int MM MMCox Figure: Predicted probability P(T < τ + 5|T > τ, Z(τ), X) for two individuals in the prostate cancer data set. Black dashed line indicates time of death. • Individual A (left): age 60, PSA 19.7 ng/mL, Gleason score 7.5, T1 Stage, 6 comorbidities, and does not experience clinical failure but dies 10 years from baseline. • Individual B (right): age 50, PSA 16 ng/mL, Gleason score 9, T2 Stage, zero comorbidities, and experiences CF at time 3 before dying at time 4.6 years. Jeremy Taylor (Dept of Biostatistics, University of Michigan) 3 July 2017 30 / 37
  31. . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Methods Comparison Simulation Study Data Application Discussion Discussion • Landmarking violates Jewell and Nielsen consistency criteria but can have similar predictive performance to joint modeling • Lots of modeling assumptions are needed for both joint modeling and landmarking • Joint modeling provides unified and principled approach • In situations where the marker process is well characterized or can be well estimated from the data, JM is likely to perform better and for longer prediction windows • Landmarking may provide a good approximation in situations with sparse longitudinal data and many longitudinal variables Jeremy Taylor (Dept of Biostatistics, University of Michigan) 3 July 2017 31 / 37
  32. . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Methods Comparison Simulation Study Data Application Discussion References • Suresh et al, 2017, Biometrical Journal • Jewell and Nielsen, 1993, Biometrika • Taylor et al, 2005, J Clin Oncol • Rizopoulus, 2011, Biometrics • VanHouwelingen, 2007, Scand J Stat • VanHouwelingen and Putter, 2011, Book • Zheng and Heagerty, 2005, Biometrics Jeremy Taylor (Dept of Biostatistics, University of Michigan) 3 July 2017 32 / 37
  33. . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Methods Comparison Simulation Study Data Application Discussion Illness-Death Model 0 1 2 λ01 (t|X) λ12 (t|X) λ02 (t|X) Healthy Illness Dead Pr(T ≥ τ + s|T > τ, Z(τ) = 1, X) Pr(T ≥ τ + s|T > τ, Z(τ) = 0, X) • Different covariates may be important for different transitions Jeremy Taylor (Dept of Biostatistics, University of Michigan) 3 July 2017 33 / 37
  34. . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Methods Comparison Simulation Study Data Application Discussion Joint modeling gives more interpretable coefficients Joint model Transition Covariate Coef. SE 0 → 1 Age 0.013 0.019 log(PSA + 1) 0.424 0.173 Gleason score 0.740 0.156 Stage T2-T3 0.798 0.349 Comorbidities 1-2 0.053 0.302 Comorbidities ≥3 0.263 0.497 0 → 2 Age 0.077 0.013 log(PSA + 1) 0.204 0.126 Gleason score 0.135 0.093 Stage T2-T3 0.051 0.169 Comorbidities 1-2 0.678 0.181 Comorbidities ≥3 1.426 0.236 1 → 2 Age 0.049 0.024 log(PSA + 1) -0.238 0.260 Gleason score 0.574 0.206 Stage T2-T3 0.059 0.475 Comorbidities 1-2 -0.927 0.421 Comorbidities ≥3 -0.507 0.646 LM4 LM4Int Covariate Coef. SE Coef. SE ζ Age 0.080 0.012 0.082 0.013 log(PSA + 1) 0.227 0.111 0.246 0.112 Gleason score 0.289 0.091 0.269 0.094 Stage T2-T3 0.042 0.167 0.057 0.171 Comorbidities 1-2 0.420 0.170 0.474 0.174 Comorbidities ≥3 1.214 0.247 1.230 0.252 ζZ(τ) CF:Age -0.015 0.024 CF:log(PSA + 1) -0.577 0.366 CF:Gleason score 0.336 0.252 CF:Stage T2-T3 0.372 0.655 CF:Comorbidities 1-2 -1.116 0.457 CF:Comorbidities ≥3 -0.148 0.708 Jeremy Taylor (Dept of Biostatistics, University of Michigan) 3 July 2017 34 / 37
  35. . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Methods Comparison Simulation Study Data Application Discussion Coefficient comparison Joint model Transition Covariate Coef. SE 0 → 1 Age 0.013 0.019 log(PSA + 1) 0.424 0.173 Gleason score 0.740 0.156 Stage T2-T3 0.798 0.349 Comorbidities 1-2 0.053 0.302 Comorbidities ≥3 0.263 0.497 0 → 2 Age 0.077 0.013 log(PSA + 1) 0.204 0.126 Gleason score 0.135 0.093 Stage T2-T3 0.051 0.169 Comorbidities 1-2 0.678 0.181 Comorbidities ≥3 1.426 0.236 1 → 2 Age 0.049 0.024 log(PSA + 1) -0.238 0.260 Gleason score 0.574 0.206 Stage T2-T3 0.059 0.475 Comorbidities 1-2 -0.927 0.421 Comorbidities ≥3 -0.507 0.646 LM4 LM4Int Covariate Coef. SE Coef. SE ζ Age 0.080 0.012 0.082 0.013 log(PSA + 1) 0.227 0.111 0.246 0.112 Gleason score 0.289 0.091 0.269 0.094 Stage T2-T3 0.042 0.167 0.057 0.171 Comorbidities 1-2 0.420 0.170 0.474 0.174 Comorbidities ≥3 1.214 0.247 1.230 0.252 ζZ(τ) CF:Age -0.015 0.024 CF:log(PSA + 1) -0.577 0.366 CF:Gleason score 0.336 0.252 CF:Stage T2-T3 0.372 0.655 CF:Comorbidities 1-2 -1.116 0.457 CF:Comorbidities ≥3 -0.148 0.708 Jeremy Taylor (Dept of Biostatistics, University of Michigan) 3 July 2017 35 / 37
  36. . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Methods Comparison Simulation Study Data Application Discussion Coefficient comparison Joint model Transition Covariate Coef. SE 0 → 1 Age 0.013 0.019 log(PSA + 1) 0.424 0.173 Gleason score 0.740 0.156 Stage T2-T3 0.798 0.349 Comorbidities 1-2 0.053 0.302 Comorbidities ≥3 0.263 0.497 0 → 2 Age 0.077 0.013 log(PSA + 1) 0.204 0.126 Gleason score 0.135 0.093 Stage T2-T3 0.051 0.169 Comorbidities 1-2 0.678 0.181 Comorbidities ≥3 1.426 0.236 1 → 2 Age 0.049 0.024 log(PSA + 1) -0.238 0.260 Gleason score 0.574 0.206 Stage T2-T3 0.059 0.475 Comorbidities 1-2 -0.927 0.421 Comorbidities ≥3 -0.507 0.646 LM4 LM4Int Covariate Coef. SE Coef. SE ζ Age 0.080 0.012 0.082 0.013 log(PSA + 1) 0.227 0.111 0.246 0.112 Gleason score 0.289 0.091 0.269 0.094 Stage T2-T3 0.042 0.167 0.057 0.171 Comorbidities 1-2 0.420 0.170 0.474 0.174 Comorbidities ≥3 1.214 0.247 1.230 0.252 ζZ(τ) CF:Age -0.015 0.024 CF:log(PSA + 1) -0.577 0.366 CF:Gleason score 0.336 0.252 CF:Stage T2-T3 0.372 0.655 CF:Comorbidities 1-2 -1.116 0.457 CF:Comorbidities ≥3 -0.148 0.708 Jeremy Taylor (Dept of Biostatistics, University of Michigan) 3 July 2017 36 / 37
  37. . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction Methods Comparison Simulation Study Data Application Discussion Age and Stage coefficient comparison Joint model Transition Covariate Coef. SE 0 → 1 Age 0.013 0.019 Stage T2-T3 0.798 0.349 0 → 2 Age 0.077 0.013 Stage T2-T3 0.051 0.169 1 → 2 Age 0.049 0.024 Stage T2-T3 0.059 0.475 LM4 LM4Int Covariate Coef. SE Coef. SE Age 0.080 0.012 0.082 0.013 Stage T2-T3 0.042 0.167 0.057 0.171 Z:Age -0.015 0.024 Z:Stage T2-T3 0.372 0.655 Jeremy Taylor (Dept of Biostatistics, University of Michigan) 3 July 2017 37 / 37