Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The beautiful world of evolutionary computation...
Search
S.Shota
October 09, 2017
Science
0
1.2k
The beautiful world of evolutionary computation made by probability and statistics
第二回Shot A Talkで使用したスライドになります
第二回Shot A Talk イベントページ:
https://shot-a-talk.connpass.com/event/60259/
S.Shota
October 09, 2017
Tweet
Share
More Decks by S.Shota
See All by S.Shota
[ICLR/ICML2019読み会] Adaptive Stochastic Natural Gradient Method for One-Shot Neural Architecture Search
satuma777
2
3.2k
論文紹介:Neural Architecture Search with Bayesian Optimisation and Optimal Transport [Kandasamy et al., NIPS 2018]
satuma777
0
1.1k
Path-Level Network Transformation for Efficient Architecture Search (ICML2018読み会)
satuma777
5
1.3k
論文紹介:Efficient Architecture Search by Network Transformation [Cai et al., AAAI-2018]
satuma777
0
1.1k
新ラボ生向けチュートリアル:文献調査(サーベイ)の仕方
satuma777
0
1.2k
編入試験への準備と編入後の生活 (Ver.2018)
satuma777
0
800
論文紹介:Gradient Boosted Feature Selection
satuma777
0
1.1k
論文紹介:Neural Architecture Search with Reinforcement Learning
satuma777
0
1.7k
論文紹介:Speeding up Automatic Hyperparameter Optimization of Deep Neural Networks by Extrapolation of Learning Curves
satuma777
0
1.2k
Other Decks in Science
See All in Science
Masseyのレーティングを用いたフォーミュラレースドライバーの実績評価手法の開発 / Development of a Performance Evaluation Method for Formula Race Drivers Using Massey Ratings
konakalab
0
190
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
1.1k
機械学習 - K-means & 階層的クラスタリング
trycycle
PRO
0
1.1k
Transport information Geometry: Current and Future II
lwc2017
0
210
Celebrate UTIG: Staff and Student Awards 2025
utig
0
240
データベース06: SQL (3/3) 副問い合わせ
trycycle
PRO
1
640
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.8k
データベース05: SQL(2/3) 結合質問
trycycle
PRO
0
810
05_山中真也_室蘭工業大学大学院工学研究科教授_だてプロの挑戦.pdf
sip3ristex
0
650
モンテカルロDCF法による事業価値の算出(モンテカルロ法とベイズモデリング) / Business Valuation Using Monte Carlo DCF Method (Monte Carlo Simulation and Bayesian Modeling)
ikuma_w
0
280
機械学習 - 授業概要
trycycle
PRO
0
250
機械学習 - pandas入門
trycycle
PRO
0
320
Featured
See All Featured
GitHub's CSS Performance
jonrohan
1032
460k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Done Done
chrislema
185
16k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
Fireside Chat
paigeccino
40
3.7k
Building Better People: How to give real-time feedback that sticks.
wjessup
368
20k
Code Reviewing Like a Champion
maltzj
525
40k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.6k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.2k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
For a Future-Friendly Web
brad_frost
180
9.9k
Transcript
5IFCFBVUJGVMXPSMEPGFWPMVUJPOBSZDPNQVUBUJPO NBEFCZQSPCBCJMJUZBOETUBUJTUJDT 然桦ה鹌⻉鎘皾 _1ZUIPOח״知⽃侧⦼鎘皾_ 4IPUB4BJUP 俕谏 绤實 .BTUFSˏT$PVSTF4UVEFOU JO:PLPIBNB/BUJPOBM6OJWFSTJUZ *OUFMMJHFOU$PNQVUJOH-BC
1*4IJOJDIJ4IJSBLBXB -JLF .BDIJOF-FBSOJOH&WPMVUJPOBSZ$PNQVUBUJPO 8FC"QQMJDBUJPO1ZUIPO"JLB ,PCBZBTIJ
8IBUJT&WPMVUJPOBSZ$PNQVUBUJPO &$ • 1SPCBCJMJUZBOE4UBUJTUJDTBSFVTFEUP BQQSPYJNBUFCJPMPHJDBMFWPMVUJPO • %JTUJOHVJTICFUXFFOQSPCBCJMJUZEJTUSJCVUJPOT BDDPSEJOHUPUBSHFUGVODUJPO •
&$JTBQPXFSGVMGPS#MBDLCPY PQUJNJ[BUJPO ˏˏFWPMVUJPOBSZDPNQVUBUJPOJT BGBNJMZPGBMHPSJUINTGPSHMPCBMPQUJNJ[BUJPO JOTQJSFECZ CJPMPHJDBMFWPMVUJPO˒ IUUQTFOXJLJQFEJBPSHXJLJ&WPMVUJPOBSZ@DPNQVUBUJPO 4FF0DU
5IFXPSMEJTGJMMFEXJUICMBDLCPYFT #MBDL#PY1SPCMFN 4ZTUFN x y f ( x )
*OQVU 0VUQVU 0CTFSWBCMF /PU0CTFSWBCMFPS /PU%JGGFSFOUJBM 0QUJNJ[FUIFPVUQVUCZDPOUSPMMJOHUIFJOQVU x y
5IFXPSMEJTGJMMFEXJUICMBDLCPYFT "QQMJDBUJPOPG&$ • %FTJHOPG'SPOUOPTFJO#VMMFUUSBJO /TFSJFT • 3FEVDFESVOOJOHOPJTFBOE4QFFEVQ IUUQUSFOEZOJLLFJCQDPKQBSUJDMFDPMVNO 4FF0DU
$."&44UBUFPGUIFBSU3FBMWBMVFE&$ • *GJOQVUJT3FBMWBMVFEWFDUPS XFVTFT (BVTTJBO%JTUSJCVUJPO • $."&4JTUIFTUBUFPGUIFBSU&$CBTFEPO (BVTTJBO%JTUSJCVUJPO 4ZTUFN
x y f ( x ) 4BNQMJOH 6QEBUF%JTUSJCVUJPO (BVTTJBO
$."&44UBUFPGUIFBSU3FBMWBMVFE&$ 3FRVJSFEPG$PNQMFYNBUSJY WFDUPSPQFSBUJPOT IUUQTXXXMSJGS_IBOTFOHFDDP$."&4UVUPSJBMQEG 4FF0DU
&WPMUJFS1ZUIPO*NQMFNFOUBUJPOPG&$ • IUUQTHJUIVCDPNTBUVNBFWPMUJFS • HJWFNFBTUBS⭐ • &WPMUJFS QSPWJEFTBTJNQMFDPNNBOE"1* •
*NQMFNFOUUIFOFXFS&$CBTFEPO4UBUJTUJDBOE *OGPSNBUJPO(FPNFUSZ • 6TFGBTUOVNFSJDBMMJCSBSZˑ/VNQZ˒ • * QMBOUPTVQQPSU(16PQFSBUJPOJOUIFGVUVSF
&WPMUJFS1ZUIPO*NQMFNFOUBUJPOPG&$