Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
人を賢くする人工知能 / 2019.08.31
Search
Shoya Ishimaru
August 31, 2019
Education
0
210
人を賢くする人工知能 / 2019.08.31
WWLコンソーシアム構築支援事業 特別講演会の講演資料です。
大阪府の高校生や教育関係者の方々と一緒に、AI時代に活躍するためには何ができるかを議論しました。
Shoya Ishimaru
August 31, 2019
Tweet
Share
More Decks by Shoya Ishimaru
See All by Shoya Ishimaru
AI研究者になる-学生時代の経験から最先端の研究まで- / 2023-09-27
shoya140
0
38
技術的視点から見る生成AIとその活用方法 / 2023-06-09
shoya140
0
22
Meta-Augmented Human: Augmenting the Capability of Augmenting the Capability / 2022-12-07
shoya140
0
18
エクストリーム・モチベーション / Extreme Motivation
shoya140
0
230
Zenから箇条書きまで幅広く使えるKeynoteテンプレート「Zebra 2」の紹介 / Introducing Zebra 2
shoya140
3
3.9k
Gaze-Based Self-Confidence Estimation on Multiple-Choice Questions and Its Feedback - Asian CHI Symposium 2020
shoya140
0
450
未踏ナイト2018LT「エンジニアリング・リサーチの振り子」
shoya140
0
130
楽しいドイツの観光地ベスト5
shoya140
0
500
人工知能研究の最前線と中学・高校で得た経験
shoya140
0
570
Other Decks in Education
See All in Education
TP5_-_UV.pdf
bernhardsvt
0
130
Use Cases and Course Review - Lecture 8 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
830
Historia dos ordenadores
irocho
0
100
Web 2.0 Patterns and Technologies - Lecture 8 - Web Technologies (1019888BNR)
signer
PRO
0
2.5k
保育士チームが実践している連続的な観察と多面的な観察を共有するための振り返り / Reflection to share “continuous and multifaceted observations” as practiced by a team of childcare professionals
psj59129
0
2.5k
自己紹介 / who-am-i
yasulab
PRO
2
4.4k
ルクソールとツタンカーメン
masakamayama
1
1.1k
LinkedIn
matleenalaakso
0
3.5k
中野区ミライ★ライター倶楽部presents『MINT』
nakamuramikumirai
0
300
オープンソース防災教育ARアプリの開発と地域防災での活用
nro2daisuke
0
240
H5P-työkalut
matleenalaakso
4
37k
Security, Privacy and Trust - Lecture 11 - Web Technologies (1019888BNR)
signer
PRO
0
2.6k
Featured
See All Featured
Building a Scalable Design System with Sketch
lauravandoore
460
33k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
30
2.1k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
33
2.7k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
VelocityConf: Rendering Performance Case Studies
addyosmani
327
24k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
3
360
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
7k
Making the Leap to Tech Lead
cromwellryan
133
9k
Writing Fast Ruby
sferik
628
61k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.2k
Raft: Consensus for Rubyists
vanstee
137
6.7k
Transcript
ਓΛݡ͘͢Δਓೳ 88-ίϯιʔγΞϜߏஙࢧԉࣄۀಛผߨԋձ ੴؙᠳ υΠπਓೳݚڀηϯλʔ %',*
ࣗݾհ
ࣗݾհ • Ѫඤݝੜ·Ε
ࣗݾհ • Ѫඤݝੜ·Ε • େࡕཱେֶେֶӃֶݚڀՊम࢜ Ԥ
ࣗݾհ • Ѫඤݝੜ·Ε • େࡕཱେֶେֶӃֶݚڀՊम࢜ Ԥ • ΧΠβʔεϥςϧϯՊେֶത࢜ ֶ
ࣗݾհ • Ѫඤݝੜ·Ε • େࡕཱେֶେֶӃֶݚڀՊम࢜ Ԥ • ΧΠβʔεϥςϧϯՊେֶത࢜ ֶ •
ݱࡏυΠπਓೳݚڀηϯλʔ্ڃݚڀһ
None
ΧΠβʔεϥςϧϯ
None
None
υΠπਓೳݚڀηϯλʔ
υΠπਓೳݚڀηϯλʔ • ӳޠදه(FSNBO3FTFBSDI$FOUSFGPS"SUJpDJBM*OUFMMJHFODF
υΠπਓೳݚڀηϯλʔ • ӳޠදه(FSNBO3FTFBSDI$FOUSFGPS"SUJpDJBM*OUFMMJHFODF • υΠπޠ%FVUTDIFT'PSTDIVOHT[FOUSVNGÛS,ÛOTUMJDIF*OUFMMJHFO[
υΠπਓೳݚڀηϯλʔ • ӳޠදه(FSNBO3FTFBSDI$FOUSFGPS"SUJpDJBM*OUFMMJHFODF • υΠπޠ%FVUTDIFT'PSTDIVOHT[FOUSVNGÛS,ÛOTUMJDIF*OUFMMJHFO[ • ௨শ%',*
υΠπਓೳݚڀηϯλʔ • ӳޠදه(FSNBO3FTFBSDI$FOUSFGPS"SUJpDJBM*OUFMMJHFODF • υΠπޠ%FVUTDIFT'PSTDIVOHT[FOUSVNGÛS,ÛOTUMJDIF*OUFMMJHFO[ • ௨শ%',* • ͱຽ͔Βͷग़ࢿΛड͚ΔඇӦར༗ݶձࣾ
υΠπਓೳݚڀηϯλʔ • ӳޠදه(FSNBO3FTFBSDI$FOUSFGPS"SUJpDJBM*OUFMMJHFODF • υΠπޠ%FVUTDIFT'PSTDIVOHT[FOUSVNGÛS,ÛOTUMJDIF*OUFMMJHFO[ • ௨শ%',* • ͱຽ͔Βͷग़ࢿΛड͚ΔඇӦར༗ݶձࣾ •
࣌Ͱͷैۀһ ͏ͪຊਓ
υΠπਓೳݚڀηϯλʔ • ӳޠදه(FSNBO3FTFBSDI$FOUSFGPS"SUJpDJBM*OUFMMJHFODF • υΠπޠ%FVUTDIFT'PSTDIVOHT[FOUSVNGÛS,ÛOTUMJDIF*OUFMMJHFO[ • ௨শ%',* • ͱຽ͔Βͷग़ࢿΛड͚ΔඇӦར༗ݶձࣾ •
࣌Ͱͷैۀһ ͏ͪຊਓ • ϑϧλΠϜͷ৬һ
υΠπਓೳݚڀηϯλʔ • ӳޠදه(FSNBO3FTFBSDI$FOUSFGPS"SUJpDJBM*OUFMMJHFODF • υΠπޠ%FVUTDIFT'PSTDIVOHT[FOUSVNGÛS,ÛOTUMJDIF*OUFMMJHFO[ • ௨শ%',* • ͱຽ͔Βͷग़ࢿΛड͚ΔඇӦར༗ݶձࣾ •
࣌Ͱͷैۀһ ͏ͪຊਓ • ϑϧλΠϜͷ৬һ • ύʔτλΠϜͷେֶӃੜ
ΧΠβʔεϥςϧϯ
ΧΠβʔεϥςϧϯ
ͭͷڌ
ͭͷڌ ,BJTFSTMBVUFSO ΧΠβʔεϥςϧϯ "VHNFOUFE7JTJPO &NCFEEFE*OUFMMJHFODF *OOPWBUJWF'BDUPSZ4ZTUFN *OUFMMJHFOU/FUXPSLT 4NBSU%BUB,OPXMFEHF4FSWJDFT
4BBSCSÛDLFO βʔϧϒϦϡοέϯ $PHOJUJWF"TTJTUBOUT -BOHVBHF5FDIOPMPHZ "HFOUT4JNVMBUFE3FBMJUZ 4NBSU4FSWJDF&OHJOFFSJOH *OTUJUVUFGPS*OGPSNBUJPO4ZTUFNT
ͭͷڌ ,BJTFSTMBVUFSO ΧΠβʔεϥςϧϯ "VHNFOUFE7JTJPO &NCFEEFE*OUFMMJHFODF *OOPWBUJWF'BDUPSZ4ZTUFN *OUFMMJHFOU/FUXPSLT 4NBSU%BUB,OPXMFEHF4FSWJDFT
4BBSCSÛDLFO βʔϧϒϦϡοέϯ $PHOJUJWF"TTJTUBOUT -BOHVBHF5FDIOPMPHZ "HFOUT4JNVMBUFE3FBMJUZ 4NBSU4FSWJDF&OHJOFFSJOH *OTUJUVUFGPS*OGPSNBUJPO4ZTUFNT #SFNFO ϒϨʔϝϯ $ZCFS1IZTJDBM4ZTUFNT 3PCPUJDT*OOPWBUJPO$FOUFS #FSMJO ϕϧϦϯ &EVDBUJPOBM5FDIOPMPHJFT 4NBSU5FYUJMFT *OUFMMJHFOU"OBMZUJDT.BTT%BUB 0MEFOCVSH0TOBCSÛDL ΦϧσϯϒϧΫɾΦεφϒϦϡοΫ .BSJOF1FSDFQUJPO 3PCPU1MBOOJOH 4NBSU&OUFSQSJTF&OHJOFFSJOH
ͭͷϦϏϯάϥϘ "EWBODFE%SJWFS"TTJTUBODF 4ZTUFNT-JWJOH-BC 3PCPUJD&YQMPSBUJPO-BC #SFNFO"NCJFOU "TTJTUFE-JWJOH-BC *OOPWBUJWF3FUBJM-BC 4NBSU'BDUPSZ 4NBSU0GpDF4QBDF *NNFSTJWF2VBOUJpFE-FBSOJOH-BC
ࠓͷߨԋɾύωϧσΟεΧογϣϯͷλΠτϧ͕ ʮ"*࣌ʹ׆༂͢ΔͨΊʹʯͱ͍͏͜ͱͳͷͰ
ࠓͷߨԋɾύωϧσΟεΧογϣϯͷλΠτϧ͕ ʮ"*࣌ʹ׆༂͢ΔͨΊʹʯͱ͍͏͜ͱͳͷͰ ͋ͳͨ"*Λ׆༻ͯ͠ ͲΜͳ͜ͱ͕͍ͨ͠Ͱ͔͢ʁ ࣭
ࠓͷߨԋɾύωϧσΟεΧογϣϯͷλΠτϧ͕ ʮ"*࣌ʹ׆༂͢ΔͨΊʹʯͱ͍͏͜ͱͳͷͰ ͋ͳͨ"*Λ׆༻ͯ͠ ͲΜͳ͜ͱ͕͍ͨ͠Ͱ͔͢ʁ ੴؙͷճਓΛݡ͍ͨ͘͠ ࣭
ਓೳWTਓؒ
ਓೳWTਓؒ %FFQ#MVF νΣε"*͕ਓؒͷϓϩΛഁΔ ਓ͕ؒڭ͑ͨϚχϡΞϧΛͱʹઓ͏
ਓೳWTਓؒ %FFQ#MVF νΣε"*͕ਓؒͷϓϩΛഁΔ ਓ͕ؒڭ͑ͨϚχϡΞϧΛͱʹઓ͏ "MQIB(P ғޟ"*͕ਓؒͷϓϩع࢜ΛഁΔ
ϓϩͷعේͱڧԽֶशΛͱʹ
ਓೳWTਓؒ %FFQ#MVF νΣε"*͕ਓؒͷϓϩΛഁΔ ਓ͕ؒڭ͑ͨϚχϡΞϧΛͱʹઓ͏ "MQIB(P ғޟ"*͕ਓؒͷϓϩع࢜ΛഁΔ
ϓϩͷعේͱڧԽֶशΛͱʹ ਓ͕"*Λ ݡ͘͢Δ
ਓೳWTਓؒ %FFQ#MVF νΣε"*͕ਓؒͷϓϩΛഁΔ ਓ͕ؒڭ͑ͨϚχϡΞϧΛͱʹઓ͏ "MQIB(P ғޟ"*͕ਓؒͷϓϩع࢜ΛഁΔ
ϓϩͷعේͱڧԽֶशΛͱʹ "MQIB(P;FSP ϧʔϧ͚͔ͩΒֶशͨ͠"*͕"MQIB(Pʹউར ਓؒͷखΛआΓͣʹ ਓ͕"*Λ ݡ͘͢Δ
ਓೳWTਓؒ %FFQ#MVF νΣε"*͕ਓؒͷϓϩΛഁΔ ਓ͕ؒڭ͑ͨϚχϡΞϧΛͱʹઓ͏ "MQIB(P ғޟ"*͕ਓؒͷϓϩع࢜ΛഁΔ
ϓϩͷعේͱڧԽֶशΛͱʹ "MQIB(P;FSP ϧʔϧ͚͔ͩΒֶशͨ͠"*͕"MQIB(Pʹউར ਓؒͷखΛआΓͣʹ ਓ͕"*Λ ݡ͘͢Δ "*͕"*Λ ݡ͘͢Δ
ਓೳWTਓؒ %FFQ#MVF νΣε"*͕ਓؒͷϓϩΛഁΔ ਓ͕ؒڭ͑ͨϚχϡΞϧΛͱʹઓ͏ "MQIB(P ғޟ"*͕ਓؒͷϓϩع࢜ΛഁΔ
ϓϩͷعේͱڧԽֶशΛͱʹ "MQIB(P;FSP ϧʔϧ͚͔ͩΒֶशͨ͠"*͕"MQIB(Pʹউར ਓؒͷखΛआΓͣʹ ਓ͕"*Λ ݡ͘͢Δ "*͕"*Λ ݡ͘͢Δ ࣍ͲΜͳ͜ͱ͕ى͖Δʁ
ਓೳWTਓؒ %FFQ#MVF νΣε"*͕ਓؒͷϓϩΛഁΔ ਓ͕ؒڭ͑ͨϚχϡΞϧΛͱʹઓ͏ "MQIB(P ғޟ"*͕ਓؒͷϓϩع࢜ΛഁΔ
ϓϩͷعේͱڧԽֶशΛͱʹ "MQIB(P;FSP ϧʔϧ͚͔ͩΒֶशͨ͠"*͕"MQIB(Pʹউར ਓؒͷखΛआΓͣʹ ਓ͕"*Λ ݡ͘͢Δ "*͕"*Λ ݡ͘͢Δ "*͕ਓΛ ݡ͘͢Δͱ໘നͦ͏ ࣍ͲΜͳ͜ͱ͕ى͖Δʁ
ݱࡏ ະདྷ "* ਓ ݡ͞
ݱࡏ ະདྷ "* ਓ ਓ "* ݡ͞
ͭͷϦϏϯάϥϘ "EWBODFE%SJWFS"TTJTUBODF 4ZTUFNT-JWJOH-BC 3PCPUJD&YQMPSBUJPO-BC #SFNFO"NCJFOU "TTJTUFE-JWJOH-BC *OOPWBUJWF3FUBJM-BC 4NBSU'BDUPSZ 4NBSU0GpDF4QBDF *NNFSTJWF2VBOUJpFE-FBSOJOH-BC
ਓؒͷֶशΛࢧԉ͢Δݚڀ
*NNFSTJWF2VBOUJpFE-FBSOJOH-BC J2--BC
*NNFSTJWF2VBOUJpFE-FBSOJOH-BC J2--BC
ֶशํ๏Λ࠷దԽͯ͠ਓΛݡ͘͢Δ
ηϯαͰڵຯɾཧղɾෛՙͷ߹͍Λਪఆ ڵຯ ओ؍٬؍తཧղ ೝෛՙ ΞΠτϥοΧ αʔϞΧϝϥ ಡΈฦ͠ إԹ ࢹ࣌ؒ
None
ࢹઢ͔Βճʹର͢Δ֬৴Λਪఆ ֬৴Λͨͣʹ͑ͯؒҧ͑ͨͷྫ ֬৴Λͬͯ͑ͯؒҧ͑ͨͷྫ
श׳͔ΒਓΛݡ͘͢Δ
ྫ͑ಡॻྔͱֶྗͷؔ ϕωοηڭҭ૯߹ݚڀॴ͕݄ʹൃදͨ͠ௐࠪ݁ՌʹΑΔͱ ͨ͘͞ΜಡॻΛ͍ͯ͠ΔࢠͲ΄Ͳֶྗ্͕͢Δ͜ͱ͕໌Β͔ʹͳͬͨ ಡॻྔಛʹʮࢉʯͰภࠩͷมԽͷ͕ࠩେ͖͍ͱ͍͏ খֶੜ ϲ݄ͷௐࠪ ಡॻগͳ͍ʙ ଟ͍Ҏ্ IUUQTCFSECFOFTTFKQTQFDJBMCJHEBUBFCPPLBOBMZTJTQIQ
ମͷ݈߁ɺ಄ͷ݈߁ ສาܭ
ମͷ݈߁ɺ಄ͷ݈߁ ສาܭ ສޠܭ
+*/4.&.&
# 3 - ిۃ ؟ిҐܭଌ ɾਨ# - 3 <N7> ɾਫฏ-3<N7>
None
None
ମͷ݈߁ɺ಄ͷ݈߁ɺ৺ͷ݈߁ ສาܭ ສޠܭ
ମͷ݈߁ɺ಄ͷ݈߁ɺ৺ͷ݈߁ ສาܭ ສޠܭ ৺Թܭ
*1"ະ౿ࣄۀʮ৺Թܭʯ ηϯαͰهͨ͠ʑͷߦಈϩά͔Β ৺ͷঢ়ଶΛఆྔԽͯ͠දࣔ͢ΔΞϓϦ
ະ౿Ͱͷ׆ಈʹ͍ͭͯʮ*1"/&847PMʯͰݕࡧ IUUQTXXXJQBHPKQpMFTQEG
·ͱΊ
·ͱΊ • υΠπਓೳݚڀηϯλʔ %',* ͭͷڌͱ ͭͷϦϏϯάϥϘͰߏ͞ΕΔυΠπͷݚڀػؔ
·ͱΊ • υΠπਓೳݚڀηϯλʔ %',* ͭͷڌͱ ͭͷϦϏϯάϥϘͰߏ͞ΕΔυΠπͷݚڀػؔ • ͋ͳͨ"*Λ׆༻ͯ͠ͲΜͳ͜ͱ͕͍ͨ͠Ͱ͔͢ʁ
·ͱΊ • υΠπਓೳݚڀηϯλʔ %',* ͭͷڌͱ ͭͷϦϏϯάϥϘͰߏ͞ΕΔυΠπͷݚڀػؔ • ͋ͳͨ"*Λ׆༻ͯ͠ͲΜͳ͜ͱ͕͍ͨ͠Ͱ͔͢ʁ • ੴؙ"*ͰਓΛͬͱݡ͍ͨ͘͠
·ͱΊ • υΠπਓೳݚڀηϯλʔ %',* ͭͷڌͱ ͭͷϦϏϯάϥϘͰߏ͞ΕΔυΠπͷݚڀػؔ • ͋ͳͨ"*Λ׆༻ͯ͠ͲΜͳ͜ͱ͕͍ͨ͠Ͱ͔͢ʁ • ੴؙ"*ͰਓΛͬͱݡ͍ͨ͘͠
• ݡ͞ͱʁ
·ͱΊ • υΠπਓೳݚڀηϯλʔ %',* ͭͷڌͱ ͭͷϦϏϯάϥϘͰߏ͞ΕΔυΠπͷݚڀػؔ • ͋ͳͨ"*Λ׆༻ͯ͠ͲΜͳ͜ͱ͕͍ͨ͠Ͱ͔͢ʁ • ੴؙ"*ͰਓΛͬͱݡ͍ͨ͘͠
• ݡ͞ͱʁ • ֶࣝशաఔΛܭଌͯ͠ڭࡐֶͼํΛ࠷దԽ
·ͱΊ • υΠπਓೳݚڀηϯλʔ %',* ͭͷڌͱ ͭͷϦϏϯάϥϘͰߏ͞ΕΔυΠπͷݚڀػؔ • ͋ͳͨ"*Λ׆༻ͯ͠ͲΜͳ͜ͱ͕͍ͨ͠Ͱ͔͢ʁ • ੴؙ"*ͰਓΛͬͱݡ͍ͨ͘͠
• ݡ͞ͱʁ • ֶࣝशաఔΛܭଌͯ͠ڭࡐֶͼํΛ࠷దԽ • श׳ৗੜ׆Λܭଌͯ͠߹ཧతͳҙࢥܾఆΛࢧԉ
·ͱΊ • υΠπਓೳݚڀηϯλʔ %',* ͭͷڌͱ ͭͷϦϏϯάϥϘͰߏ͞ΕΔυΠπͷݚڀػؔ • ͋ͳͨ"*Λ׆༻ͯ͠ͲΜͳ͜ͱ͕͍ͨ͠Ͱ͔͢ʁ • ੴؙ"*ͰਓΛͬͱݡ͍ͨ͘͠
• ݡ͞ͱʁ • ֶࣝशաఔΛܭଌͯ͠ڭࡐֶͼํΛ࠷దԽ • श׳ৗੜ׆Λܭଌͯ͠߹ཧతͳҙࢥܾఆΛࢧԉ • ଞʹੑͳͲ
ࣾձʹΠϯύΫτΛ༩͑ΔΞϓϦαʔϏεΛ࡞Δൿ݃ ಠࣗͷࢹ͔ΒϓϩδΣΫτΛੜΈग़͢ • ࣗۙͷ୭͔͕͍͍ͨͱࢥ͏ͷ ͕ͳ͚ΕϦϦʔε·ͰϞνϕʔγϣϯΛҡ࣋͢Δͷ͍͠ɻ • ࣗͷझຯɾಛٕɾܦݧΛ׆༻ͨ͠ͷ ٕज़͚ͩͰউͯͳͯ͘"/%ͷ࠽ೳͰҰ൪ʹͳΕΔՄೳੑ͕͋Δɻ • ੈͷதͷৗࣝͷͷݟํΛม͑Δͷ
୭͕ϚΠφεͩͱࢥ͍ͬͯΔͷΛϓϥεʹͰ͖ͳ͍͔ߟ͑Δɻ ύωϧσΟεΧογϣϯͰ͍࣭ͨͷճ