Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
みんなのPython勉強会#38登壇資料 tf-idfを使ったグロースハック
Search
sugaya takehiro
September 12, 2018
Technology
1
900
みんなのPython勉強会#38登壇資料 tf-idfを使ったグロースハック
sugaya takehiro
September 12, 2018
Tweet
Share
Other Decks in Technology
See All in Technology
PLaMoの事後学習を支える技術 / PFN LLMセミナー
pfn
PRO
9
3.9k
定期的な価値提供だけじゃない、スクラムが導くチームの共創化 / 20251004 Naoki Takahashi
shift_evolve
PRO
4
340
英語は話せません!それでも海外チームと信頼関係を作るため、対話を重ねた2ヶ月間のまなび
niioka_97
0
130
社内お問い合わせBotの仕組みと学び
nish01
1
470
Why React!?? Next.jsそしてReactを改めてイチから選ぶ
ypresto
10
4.5k
神回のメカニズムと再現方法/Mechanisms and Playbook for Kamikai scrumat2025
moriyuya
4
600
AI時代だからこそ考える、僕らが本当につくりたいスクラムチーム / A Scrum Team we really want to create in this AI era
takaking22
7
3.7k
SOC2取得の全体像
shonansurvivors
1
510
OpenAI gpt-oss ファインチューニング入門
kmotohas
2
1.1k
M5製品で作るポン置きセルラー対応カメラ
sayacom
0
160
Azure SynapseからAzure Databricksへ 移行してわかった新時代のコスト問題!?
databricksjapan
0
150
業務自動化プラットフォーム Google Agentspace に入門してみる #devio2025
maroon1st
0
200
Featured
See All Featured
Learning to Love Humans: Emotional Interface Design
aarron
274
40k
GitHub's CSS Performance
jonrohan
1032
460k
Designing for humans not robots
tammielis
254
26k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.2k
Scaling GitHub
holman
463
140k
Git: the NoSQL Database
bkeepers
PRO
431
66k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
Optimizing for Happiness
mojombo
379
70k
KATA
mclloyd
32
15k
4 Signs Your Business is Dying
shpigford
185
22k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
30
2.9k
Transcript
͍·͞Β͚ͩͲPythonͰtf-idfͬͯΈͨ UGJEGΛͬͯ ΞϓϦͷάϩʔεΛͯ͠Έͨ
ΤϯδχΞ σʔλΞφϦετ Ϗδωε ຊ͍Β͍ͯ͠Δํ
ࣗݾհ • Takehiro Sugara @sugartaker • ੲϦαʔνձࣾͰ ੳɾࣄۀ։ൃ͍ͯ͠·ͨ͠ • ࠓϔϧεέΞΞϓϦͷ
άϩʔεϋοΫΛ͍ͯ͠·͢
ಥવͰ͕͢ɺࢲ͋ΔࣈΛͱͯάϩʔεͤ͞·ͨ͠ ඪ
1 0 2 ࢲͷମॏͰ͢ దਖ਼ମॏ
ࠓ͢͜ͱ • ࣗݾհ • tf-idfΛͬͯΞϓϦͷάϩʔεΛͯ͠Έͨ
͜Μͳ͜ͱ͋Γ·ͤΜ͔ʁ • Ϛʔέ୲ऀ • ݁ہͲΜͳײ͡ͷࠂόφʔ͕͍͍ͷʁ • ηʔϧε୲ऀ • ݁ہͲΜͳײ͡ͷϝϧϚΨɾϓογϡ௨͕͍͍ͷʁ •
ϥΠλʔ • ݁ہͲΜͳײ͡ͷهࣄ͕͍͍ͷʁ
͜Μͳ͜ͱ͋Γ·ͤΜ͔ʁ ਖ਼Ϧιʔε͕Γͳͯ͘ࡉ͔͍ͱ͜Ζ·ͰΈͯΒΕͳ͍ʂ
'J/$Ͱ͋Γ·ͨ͠
ͦͦ'J/$ͬͯͲΜͳձࣾʁ
ʮ༧ϔϧεέΞºςΫϊϩδʔʯʹಛԽͨ͠ϔϧεςοΫϕϯνϟʔ l"CPVU'J/$z
ɹ FiNC͕ఏڙՄೳͳιϦϡʔγϣϯ 'J/$͕ఏڙ͍ͯ͠ΔαʔϏε FiNCΞϓϦ ʢToC͚ΞϓϦʣ FiNC for Business ʢToB͚αʔϏεʣ FiNC
Fit ʢύʔιφϧδϜʣ FiNC Mall ʢECαΠτʣ
ɹ FiNC͕ఏڙՄೳͳιϦϡʔγϣϯ 'J/$͕ఏڙ͍ͯ͠ΔαʔϏε FiNCΞϓϦ ʢToC͚ΞϓϦʣ FiNC for Business ʢToB͚αʔϏεʣ FiNC
Fit ʢύʔιφϧδϜʣ FiNC Mall ʢECαΠτʣ
ɹ FiNC͕ఏڙՄೳͳιϦϡʔγϣϯ 'J/$ΞϓϦ͕ఏڙ͍ͯ͠ΔαʔϏε ϝσΟΞ ϥΠϑϩά νϟοτϘοτ αϒεΫϦϓγϣϯ
ɹ FiNC͕ఏڙՄೳͳιϦϡʔγϣϯ 'J/$ΞϓϦ͕ఏڙ͍ͯ͠ΔαʔϏε ϝσΟΞ ϥΠϑϩά νϟοτϘοτ αϒεΫϦϓγϣϯ
ɹ FiNC͕ఏڙՄೳͳιϦϡʔγϣϯ 'J/$ΞϓϦ͕ఏڙ͍ͯ͠ΔαʔϏε ϝσΟΞ • 20181݄͔Βελʔτ • ϔϧεέΞؔ࿈ͷهࣄΛܝࡌ͍ͯ͠Δ
՝ ݁ہͲΜͳײ͡ͷهࣄ͕͍͍ͷʁ ϥΠλʔ
՝ • ݸʑͷίϯςϯπͷCTRɾ͓ؾʹೖΓɾࡏ࣌ؒΘ͔Δ • ͰશମతʹͲΜͳίϯςϯπ͕έΔͷ͔ײ֮తʹ͔͠Θ͔Βͳ͍
ղܾࡦ • ͲΜͳ୯ޠ͕ೖͬͨهࣄͩͱέ͍͢ͷ͔Λఆྔతʹग़͢
UGJEGΛͬͯΈͨ
UGJEGͱʁ • tf-idfͱʁ • Term Frequency Inverse Document Frequencyͷུ •
จষͷத͔ΒಛޠΛநग़͜ͱ͕Ͱ͖Δ • tf-idfΛ͏ཧ༝ • ʢݹయతͳख๏͚ͩͲʣ • ܭࢉ͍͢͠ • આ໌͍͢͠ • ͺͬͱग़ͤΔ
UGJEGͷϩδοΫ • tfɿରจষͷର୯ޠͷग़ݱճ ɹɹ/ ରจষͷશͯͷ୯ޠͷग़ݱճ ɹˠͦͷ୯ޠ͕ͦͷจষʹͲΕ͚ͩଟ͘ग़ݱ͍ͯ͠Δ͔ • idfɿlog(૯จষ / ର୯ޠ͕ग़ݱ͢Δจষʣ+
1 ɹɹˠͦͷ୯ޠ͕શମͷจষʹରͯ͠ͲΕ͚ͩϨΞ͔ • tf-idfɿtf * idf
45&1 ϩʔσʔλ ࡞ ܗଶૉղੳ tf-idfΛ ܭࢉ
ϩʔσʔλͷ࡞ จষ༰ จষ1 ࢲPythonͷຊΛಡΉ จষ2 ࢲຊ͕͖ͩ จষ3 ࢲPythonͷຊΛಡΈͳ͕Β PythonͷίʔυΛॻ͘
ܗଶૉղੳ จষ༰ จষ1 ࢲPythonͷຊΛಡΉ จষ2 ࢲຊ͕͖ͩ จষ3 ࢲPythonͷຊΛಡΈͳ͕Β PythonͷίʔυΛॻ͘
ܗଶૉղੳ จষ༰ จষ1 ࢲ Python ຊ จষ2 ࢲ ຊ จষ3
ࢲ Python ຊ Pythonίʔυ
UGJEGͷܭࢉ จষ༰ จষ1 ࢲ Python ຊ จষ2 ࢲ ຊ จষ3
ࢲ Python ຊ Python ίʔυ TF ࢲ 1/5 = 0.2 Python 2/5 = 0.4 ຊ 1/5 = 0.2 ίʔυ 1/5 = 0.2
UGJEGͷܭࢉ จষ༰ จষ1 ࢲ Python ຊ จষ2 ࢲ ຊ จষ3
ࢲ Python ຊ Python ίʔυ TF ࢲ 1/5 = 0.2 Python 2/5 = 0.4 ຊ 1/5 = 0.2 ίʔυ 1/5 = 0.2 ରจষͷର୯ޠͷग़ݱճ ɹɹ/ ରจষͷશͯͷ୯ޠͷग़ݱճ →ͦͷ୯ޠ͕ͦͷจষʹͲΕ͚ͩଟ͘ग़ݱ͍ͯ͠Δ͔
UGJEGͷܭࢉ จষ༰ จষ1 ࢲ Python ຊ จষ2 ࢲ ຊ จষ3
ࢲ Python ຊ Python ίʔυ TF IDF ࢲ 1/5 = 0.2 log2(3/3) + 1 = 1 Python 2/5 = 0.4 log2(3/2) + 1 = 1.58 ຊ 1/5 = 0.2 log2(3/3) + 1= 1 ίʔυ 1/5 = 0.2 log2(3/1) + 1= 2.58
UGJEGͷܭࢉ จষ༰ จষ1 ࢲ Python ຊ จষ2 ࢲ ຊ จষ3
ࢲ Python ຊ Python ίʔυ TF IDF ࢲ 1/5 = 0.2 log2(3/3) + 1 = 1 Python 2/5 = 0.4 log2(3/2) + 1 = 1.58 ຊ 1/5 = 0.2 log2(3/3) + 1= 1 ίʔυ 1/5 = 0.2 log2(3/1) + 1= 2.58 log(૯จষ / ର୯ޠ͕ग़ݱ͢Δจষʣ+ 1 →ͦͷ୯ޠ͕શମͷจষʹରͯ͠ͲΕ͚ͩϨΞ͔
UGJEGͷܭࢉ จষ༰ จষ1 ࢲ Python ຊ จষ2 ࢲ ຊ จষ3
ࢲ Python ຊ Python ίʔυ TF IDF TF-IDF ࢲ 1/5 = 0.2 log2(3/3) + 1 = 1 0.20 Python 2/5 = 0.4 log2(3/2) + 1 = 1.58 0.63 ຊ 1/5 = 0.2 log2(3/3) + 1= 1 0.20 ίʔυ 1/5 = 0.2 log2(3/1) + 1= 2.58 0.52
UGJEGͷܭࢉ จষ༰ จষ1 ࢲ Python ຊ จষ2 ࢲ ຊ จষ3
ࢲ Python ຊ Python ίʔυ TF IDF TF-IDF ࢲ 1/5 = 0.2 log2(3/3) + 1 = 1 0.20 Python 2/5 = 0.4 log2(3/2) + 1 = 1.58 0.63 ຊ 1/5 = 0.2 log2(3/3) + 1= 1 0.20 ίʔυ 1/5 = 0.2 log2(3/1) + 1= 2.58 0.52 TF * IDF
UGJEGͷܭࢉ จষ༰ จষ1 ࢲ Python ຊ จষ2 ࢲ ຊ จষ3
ࢲ Python ຊ Python ίʔυ TF IDF TF-IDF ࢲ 1/5 = 0.2 log2(3/3) + 1 = 1 0.20 Python 2/5 = 0.4 log2(3/2) + 1 = 1.58 0.63 ຊ 1/5 = 0.2 log2(3/3) + 1= 1 0.20 ίʔυ 1/5 = 0.2 log2(3/1) + 1= 2.58 0.52
UGJEGͷܭࢉ จষ༰ จষ1 ࢲ Python ຊ จষ2 ࢲ ຊ จষ3
ࢲ Python ຊ Python ίʔυ TF IDF TF-IDF ࢲ 1/5 = 0.2 log2(3/3) + 1 = 1 0.20 Python 2/5 = 0.4 log2(3/2) + 1 = 1.58 0.63 ຊ 1/5 = 0.2 log2(3/3) + 1= 1 0.20 ίʔυ 1/5 = 0.2 log2(3/1) + 1= 2.58 0.52 ͜ͷจষͰ Pythonͱ͍͏୯ޠ ͕ಛతʂ
UGJEGͷܭࢉ จষ༰ จষ1 ࢲ Python ຊ จষ2 ࢲ ຊ จষ3
ࢲ Python ຊ Python ίʔυ TF IDF TF-IDF ࢲ 1/5 = 0.2 log2(3/3) + 1 = 1 0.20 Python 2/5 = 0.4 log2(3/2) + 1 = 1.58 0.63 ຊ 1/5 = 0.2 log2(3/3) + 1= 1 0.20 ίʔυ 1/5 = 0.2 log2(3/1) + 1= 2.58 0.52 ͜ͷจষͰ Pythonͱ͍͏୯ޠ ͕ಛతʂ
՝ • ݸʑͷίϯςϯπͷCTRɾ͓ؾʹೖΓɾࡏ࣌ؒΘ͔Δ • ͰશମతʹͲΜͳίϯςϯπ͕ड͚Δͷ͔ײ֮తʹ͔͠Θ͔Βͳ͍
͔ͭͯ͜Μͳ͜ͱ͕͋Γ·ͨ͠ هࣄ༰ KPI هࣄ1 μΠΤοτʹӡಈ͕ॏཁ ྑ͍ هࣄ2 μΠΤοτదͳӡಈͱӫཆɺ ಛʹ࣭ͷ੍ݶ͕ޮՌత ྑ͍
هࣄ3 ࣭ΛμΠΤοτதʹ৯ͨ͘ͳͬͨΒʁ ѱ͍ هࣄ4 ӫཆΛؾʹͯ͠μΠΤοτɺ ӫཆ࣭όϥϯεΑ͘ઁऔ͠Α͏ ѱ͍
͔ͭͯ͜Μͳ͜ͱ͕͋Γ·ͨ͠ هࣄ༰ KPI هࣄ1 μΠΤοτʹӡಈ͕ॏཁ ྑ͍ هࣄ2 μΠΤοτదͳӡಈͱӫཆɺ ಛʹ࣭ͷ੍ݶ͕ޮՌత ྑ͍
هࣄ3 ࣭ΛμΠΤοτதʹ৯ͨ͘ͳͬͨΒʁ ѱ͍ هࣄ4 ӫཆΛؾʹͯ͠μΠΤοτɺ ӫཆ࣭όϥϯεΑ͘ઁऔ͠Α͏ ѱ͍
͔ͭͯ͜Μͳ͜ͱ͕͋Γ·ͨ͠ هࣄ༰ KPI هࣄ1 μΠΤοτʹӡಈ͕ॏཁ ྑ͍ هࣄ2 μΠΤοτదͳӡಈͱӫཆɺ ಛʹ࣭ͷ੍ݶ͕ޮՌత ྑ͍
هࣄ3 ࣭ΛμΠΤοτதʹ৯ͨ͘ͳͬͨΒʁ ѱ͍ هࣄ4 ӫཆΛؾʹͯ͠μΠΤοτɺ ӫཆ࣭όϥϯεΑ͘ઁऔ͠Α͏ ѱ͍ μΠΤοτهࣄ͕ ͍͍Μ͡Όͳ͍ʁ
͔ͭͯ͜Μͳ͜ͱ͕͋Γ·ͨ͠ هࣄ༰ KPI هࣄ1 μΠΤοτʹӡಈ͕ॏཁ ྑ͍ هࣄ2 μΠΤοτదͳӡಈͱӫཆɺ ಛʹ࣭ͷ੍ݶ͕ޮՌత ྑ͍
هࣄ3 ࣭ΛμΠΤοτதʹ৯ͨ͘ͳͬͨΒʁ ѱ͍ هࣄ4 ӫཆΛؾʹͯ͠μΠΤοτɺ ӫཆ࣭όϥϯεΑ͘ઁऔ͠Α͏ ѱ͍ ຊ μΠΤοτهࣄ ྑ͍ͷѱ͍ͷ ͋Δ
UGJEGͩͯ͠ΈΔ هࣄ༰ KPI هࣄ1 μΠΤοτʹӡಈ͕ॏཁ ྑ͍ هࣄ2 μΠΤοτదͳӡಈͱӫཆɺ ಛʹ࣭ͷ੍ݶ͕ޮՌత ྑ͍
هࣄ3 ࣭ΛμΠΤοτதʹ৯ͨ͘ͳͬͨΒʁ ѱ͍ هࣄ4 ӫཆΛؾʹͯ͠μΠΤοτɺ ӫཆ࣭όϥϯεΑ͘ઁऔ͠Α͏ ѱ͍
UGJEGͩͯ͠ΈΔ هࣄ༰ KPI هࣄ1 μΠΤοτ ӡಈ ྑ͍ هࣄ2 μΠΤοτ ӡಈ
ӫཆ ࣭ ྑ͍ هࣄ3 ࣭ μΠΤοτ ѱ͍ هࣄ4 ӫཆ μΠΤοτ ӫཆ ࣭ ѱ͍
UGJEGͩͯ͠ΈΔ هࣄ༰ KPI هࣄ1 μΠΤοτ ӡಈ ྑ͍ هࣄ2 μΠΤοτ ӡಈ
ӫཆ ࣭ ྑ͍ هࣄ3 ࣭ μΠΤοτ ѱ͍ هࣄ4 ӫཆ μΠΤοτ ӫཆ ࣭ ѱ͍
UGJEGͩͯ͠ΈΔ هࣄ༰ KPI هࣄ1 هࣄ2 μΠΤοτ ӡಈ μΠΤοτ ӡಈ ӫཆ
࣭ ྑ͍ هࣄ3 هࣄ4 ࣭ μΠΤοτ ӫཆ μΠΤοτ ӫཆ ࣭ ѱ͍
UGJEGͩͯ͠ΈΔ tf-idf μΠΤοτ ӡಈ ӫཆ ࣭ هࣄ1 هࣄ2 ※KPIྑ͍ 0.54
0.75 0.27 0.27 هࣄ3 هࣄ4 ※KPIѱ͍ 0.56 0 0.58 0.58
UGJEGͩͯ͠ΈΔ tf-idf μΠΤοτ ӡಈ ӫཆ ࣭ هࣄ1 هࣄ2 ※KPIྑ͍ 0.54
0.75 0.27 0.27 هࣄ3 هࣄ4 ※KPIѱ͍ 0.56 0 0.58 0.58 ӡಈͷهࣄ͕ Αͦ͞͏ʂ
ࢪࡦ ྑ͛͞ͳ୯ޠ͔ΒੜίϯςϯπΛ࡞͢Δ
݁Ռ DAUҰਓ͋ͨΓͷPV্͕ʂ
·ͱΊ • tf-idf • PythonͰ؆୯ʹͩ͢͜ͱ͕Ͱ͖Δ • จষͷத͔ΒಛޠΛநग़Ͱ͖Δ • ͬ͘͟ΓͱέΔ/έͳ͍ΩʔϫʔυͷΛ͔ͭΊΔ •
ςΩετͷཁྨͷ࠷ॳͷҰาʹ͓͢͢Ί • ࠓճهࣄͷࣄྫ͕ͩɺϝϧϚΨɾϓογϡ௨ͳͲ Ͱ͑Δͣ
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠ʂ