Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
研究室紹介用スライド: Unified Memoryを活⽤した効率的な計算⽅法を考えよう
Search
SuperHotDog
January 09, 2025
0
88
研究室紹介用スライド: Unified Memoryを活⽤した効率的な計算⽅法を考えよう
SuperHotDog
January 09, 2025
Tweet
Share
More Decks by SuperHotDog
See All by SuperHotDog
SigLIP
superhotdogcat
1
81
post-training
superhotdogcat
3
580
大規模モデル計算の裏に潜む 並列分散処理について
superhotdogcat
1
53
オンプレソロプレイ
superhotdogcat
0
76
CUDAを触ろう
superhotdogcat
0
110
GemmaでRAG を作ろう
superhotdogcat
1
590
Featured
See All Featured
Six Lessons from altMBA
skipperchong
28
3.9k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
183
54k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
Documentation Writing (for coders)
carmenintech
73
5k
Rails Girls Zürich Keynote
gr2m
95
14k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Building Adaptive Systems
keathley
43
2.7k
A Tale of Four Properties
chriscoyier
160
23k
Typedesign – Prime Four
hannesfritz
42
2.7k
Automating Front-end Workflow
addyosmani
1370
200k
Embracing the Ebb and Flow
colly
86
4.8k
How GitHub (no longer) Works
holman
314
140k
Transcript
Unified Memoryを活⽤した効 率的な計算⽅法を考えよう SuperHotDogCat
宣伝: GB10 NVIDIA Project DIGITS(3000$)
親の顔より⾒たエラー
何故起きるのか ・GPUメモリが⾜り ない →複数枚積めばいい のか?
パラメーター数遷移 • AI Modelのパラメー ターは指数関数的に増 加中
VRAMは? ・V100 32GB(2017) ・A100 80GB(2020) ・H100 80GB(2022) ・H200 141GB(2024) ・B200
180GB/192GB(2024) ・1B Model → float32で4GB, fullでの訓練はAdam Optimizerで 16倍ぐらいになるので64GB必要 ・100B Modelで6.4TBのGPU必要 ・1T Modelだと640TB, 苦しい
省メモリへのアプローチ ・量⼦化(1/2~1/4倍削減), 枝刈り(1/2倍削減程度)←精度劣化が 避けられない, 枝刈りは推論のみでしか使えない(Edgeデバイス では依然として重要) ・アルゴリズム的な削減 ・再計算(Gradient Checkpointing) ・Flash
attention ↑厳密計算かつメモリ削減でGood ・複数台に分散 ・Megatron-LM, Deepspeedなどが開発ではよく使われる
Heterogenious Memory ・GPUだけではなくCPUも使おう ・GH200 ・CPUとGPUのPage tableが共通 ・GPUメモリをCPUのように使⽤ ・最⼤でGPU+CPUの96+480GBが使 える ・買うGPUの枚数が少なくて済む
問題点 ・ソフトウェア上はGPUとCPUのメモリが同じように使える ・物理メモリ的にどこに割り当てられているかで速度低下などが 起きる←速度向上のためにGPUを使うのだから本末転倒 ・頑張って両⽴する
宣伝: GB10 NVIDIA Project DIGITS(3000$)