Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
10分で学ぶ、RAGの仕組みと実践
Search
Marimo
April 30, 2025
Technology
0
1k
10分で学ぶ、RAGの仕組みと実践
2025/4/24 CDLE北海道主催RAGを実装してみよう!ミニハンズオン会のセミナー資料です
Marimo
April 30, 2025
Tweet
Share
Other Decks in Technology
See All in Technology
型がない世界に生まれ落ちて 〜TypeScript運用進化の歴史〜
narihara
1
190
他チームへ越境したら、生データ提供ソリューションのクエリ費用95%削減へ繋がった話 / Cross-Team Impact: 95% Off Raw Data Query Costs
yamamotoyuta
0
150
iOS/Androidで無限循環Carousel表現を考えてみる
fumiyasac0921
0
110
Slackひと声でブログ校正!Claudeレビュー自動化編
yusukeshimizu
3
120
新卒から4年間、20年もののWebサービスと向き合って学んだソフトウェア考古学 - PHPカンファレンス新潟2025 / new graduate 4year software archeology
oguri
2
220
会社員しながら本を書いてきた知見の共有
sat
PRO
2
630
撤退危機からのピボット : 4年目エンジニアがリードする TypeScript で挑む事業復活 / crisis-to-pivot-4th-year-engineer-ts-relaunch
carta_engineering
2
730
Rebase エンジニアリング組織の現状とこれから
rebase_engineering
0
110
大規模PaaSにおける監視基盤の構築と効率化の道のり
lycorptech_jp
PRO
0
130
オープンソースとビジネス: 位置情報の世界からみえる流れ / 札幌IT石狩鍋#2
sorami
0
220
AWS LambdaでSocket通信サーバーレスアプリケーションのリアルタイム通信 / 20250523 Kumiko Hennmi
shift_evolve
1
290
大事なのは、AIの精度だけじゃない!〜1円のズレも許されない経理領域とAI〜
jun_nemoto
8
4.6k
Featured
See All Featured
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
14
1.5k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
105
19k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
14
870
The Invisible Side of Design
smashingmag
299
50k
Building Better People: How to give real-time feedback that sticks.
wjessup
368
19k
Thoughts on Productivity
jonyablonski
69
4.7k
How to Ace a Technical Interview
jacobian
276
23k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.1k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
1
55
Transcript
RAGを実装してみよう!ミニハンズオン会 10分で学ぶ、RAGの仕組みと実践 CDLE北海道 池田広樹
自己紹介 池田 広樹 札幌市在住のエンジニア 大学時代に生化学分野で多変量解析を経験 代謝物の網羅的解析の分野 昨年、 「E資格チャレンジ」でE資格取得 その他、AIコンペのKaggleや松尾研LLM2024など に参加してます
①RAGの概要
①RAGの概要 LLMが外部知識に基づき回答する技術 最新の知識を反映、ハルシネーションを抑えるなどの効果 検索部位(Retriever)と生成部位(Generation)に分かれます 池田広樹って何者? 問い合わせ(クエリ) DB 外部知識 池田広樹は札幌在住のエン ジニアで・・・
池田広樹はPython/Flutter が得意です・・ 関連した文章 検索部位 (Retriever) RAG (Retrieval-Augmented Generation: 検索拡張生成)
①RAGの概要 池田広樹は札幌在住のエン ジニアで・・・ 池田広樹はPython/Flutter が得意です・・ 関連した文章 池田広樹って何者? 以下の情報を参照して答えてく ださい 池田広樹は札幌在住のエン
ジニアで・・・ 池 田 広 樹 は Python/Flutter が得意です・・ 池田広樹は札幌在住 のエンジニアで、 Python/Flutterが得 意です。 生成部分 (Generation) RAG (Retrieval-Augmented Generation: 検索拡張生成) LLMが外部知識に基づき回答する技術 最新の知識を反映、ハルシネーションを抑えるなどの効果 検索部位(Retriever)と生成部位(Generation)に分かれます
②検索部位(Retriever)
RAGは検索が重要 → どれだけ問い合わせ(クエリ)に関連した文章を見つけられるか ②検索部位(Retriever) インデックス検索 埋め込みベクトルの類似度・距離計算 コサイン類似度, ユークリッド距離(L2ノルム) ... キーワード検索
単語の出現頻度に基づいて類似度を計算 TF-IDF, BM25 知識グラフ GraphRAG
②検索部位(Retriever) インデックス検索 埋め込みベクトルの類似度・距離計算 コサイン類似度, ユークリッド距離(L2ノルム)... 意味的に似てる 意味的に似てない 池田広樹って何者? [0.0228, -0.1749,
0.1850, -0.1225, 0.1583, -0.6414, -0.0728, 0.6913] 埋め込みモデルによってベクトル変換 池田広樹は札幌在住のエンジニアで・・・ 池田広樹って何者? CDLE北海道では、北海道でAIに興味のある方々を・・・
②検索部位(Retriever) キーワード検索 単語の出現頻度に基づいて類似度を計算 TF-IDF, BM25 池田広樹って何者? [池田, 広樹, 何者] 池田広樹は札幌在住のエンジニアで・・・
[池田, 広樹, 札幌, 在住, エンジニア...] CDLE北海道では、北海道でAIに興味のある方々を・・・ [CDLE北海道, 北海道, AI, 興味, ある, 方々...] 単語が一致するほどスコアが高く、 珍しい単語はスコアが高い 高スコア 低スコア
③ハンズオンの流れ
③ハンズオンの流れ 1部:RAGの基本原理を学ぶ (30分) 埋め込みベクトルに触れる RAGの検索部分(Retriever)に触れる インデックス検索の基礎 キーワード検索の基礎 ハイブリット検索(インデックス検索とキーワード検索の融合)に触れる 2部:langchainを使って、実践的なRAGに触れる (20分)
Chunking: 文章を小さな単位(チャンク)に分割するプロセス langchainの「チェイン」を使ったRAGの構築 RAGの定量的な評価(RAGAS)
🎯 それでは実際に手を動かしてみましょう!