Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
10分で学ぶ、RAGの仕組みと実践
Search
Marimo
April 30, 2025
Technology
0
1.1k
10分で学ぶ、RAGの仕組みと実践
2025/4/24 CDLE北海道主催RAGを実装してみよう!ミニハンズオン会のセミナー資料です
Marimo
April 30, 2025
Tweet
Share
More Decks by Marimo
See All by Marimo
ゼロから学ぶ! MCP入門ハンズオン
supermarimobros
1
950
Other Decks in Technology
See All in Technology
「守る」から「進化させる」セキュリティへ ~AWS re:Inforce 2025参加報告~ / AWS re:Inforce 2025 Participation Report
yuj1osm
1
110
AIドリブンのソフトウェア開発 - うまいやり方とまずいやり方
okdt
PRO
9
570
kintone開発チームの紹介
cybozuinsideout
PRO
0
73k
[CV勉強会@関東 CVPR2025 読み会] MegaSaM: Accurate, Fast, and Robust Structure and Motion from Casual Dynamic Videos (Li+, CVPR2025)
abemii
0
180
実践データベース設計 ①データベース設計概論
recruitengineers
PRO
2
180
[OCI Skill Mapping] AWSユーザーのためのOCI(2025年8月20日開催)
oracle4engineer
PRO
2
140
現場が抱える様々な問題は “組織設計上” の問題によって生じていることがある / Team-oriented Organization Design 20250827
mtx2s
2
780
Yahoo!ニュースにおけるソフトウェア開発
lycorptech_jp
PRO
0
330
開発と脆弱性と脆弱性診断についての話
su3158
1
1.1k
mruby(PicoRuby)で ファミコン音楽を奏でる
kishima
1
210
帳票Vibe Coding
terurou
0
140
Go で言うところのアレは TypeScript で言うとコレ / Kyoto.なんか #7
susisu
5
1.2k
Featured
See All Featured
Rebuilding a faster, lazier Slack
samanthasiow
83
9.1k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
890
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3k
How to train your dragon (web standard)
notwaldorf
96
6.2k
Optimizing for Happiness
mojombo
379
70k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1.1k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.4k
Embracing the Ebb and Flow
colly
87
4.8k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
Scaling GitHub
holman
462
140k
Transcript
RAGを実装してみよう!ミニハンズオン会 10分で学ぶ、RAGの仕組みと実践 CDLE北海道 池田広樹
自己紹介 池田 広樹 札幌市在住のエンジニア 大学時代に生化学分野で多変量解析を経験 代謝物の網羅的解析の分野 昨年、 「E資格チャレンジ」でE資格取得 その他、AIコンペのKaggleや松尾研LLM2024など に参加してます
①RAGの概要
①RAGの概要 LLMが外部知識に基づき回答する技術 最新の知識を反映、ハルシネーションを抑えるなどの効果 検索部位(Retriever)と生成部位(Generation)に分かれます 池田広樹って何者? 問い合わせ(クエリ) DB 外部知識 池田広樹は札幌在住のエン ジニアで・・・
池田広樹はPython/Flutter が得意です・・ 関連した文章 検索部位 (Retriever) RAG (Retrieval-Augmented Generation: 検索拡張生成)
①RAGの概要 池田広樹は札幌在住のエン ジニアで・・・ 池田広樹はPython/Flutter が得意です・・ 関連した文章 池田広樹って何者? 以下の情報を参照して答えてく ださい 池田広樹は札幌在住のエン
ジニアで・・・ 池 田 広 樹 は Python/Flutter が得意です・・ 池田広樹は札幌在住 のエンジニアで、 Python/Flutterが得 意です。 生成部分 (Generation) RAG (Retrieval-Augmented Generation: 検索拡張生成) LLMが外部知識に基づき回答する技術 最新の知識を反映、ハルシネーションを抑えるなどの効果 検索部位(Retriever)と生成部位(Generation)に分かれます
②検索部位(Retriever)
RAGは検索が重要 → どれだけ問い合わせ(クエリ)に関連した文章を見つけられるか ②検索部位(Retriever) インデックス検索 埋め込みベクトルの類似度・距離計算 コサイン類似度, ユークリッド距離(L2ノルム) ... キーワード検索
単語の出現頻度に基づいて類似度を計算 TF-IDF, BM25 知識グラフ GraphRAG
②検索部位(Retriever) インデックス検索 埋め込みベクトルの類似度・距離計算 コサイン類似度, ユークリッド距離(L2ノルム)... 意味的に似てる 意味的に似てない 池田広樹って何者? [0.0228, -0.1749,
0.1850, -0.1225, 0.1583, -0.6414, -0.0728, 0.6913] 埋め込みモデルによってベクトル変換 池田広樹は札幌在住のエンジニアで・・・ 池田広樹って何者? CDLE北海道では、北海道でAIに興味のある方々を・・・
②検索部位(Retriever) キーワード検索 単語の出現頻度に基づいて類似度を計算 TF-IDF, BM25 池田広樹って何者? [池田, 広樹, 何者] 池田広樹は札幌在住のエンジニアで・・・
[池田, 広樹, 札幌, 在住, エンジニア...] CDLE北海道では、北海道でAIに興味のある方々を・・・ [CDLE北海道, 北海道, AI, 興味, ある, 方々...] 単語が一致するほどスコアが高く、 珍しい単語はスコアが高い 高スコア 低スコア
③ハンズオンの流れ
③ハンズオンの流れ 1部:RAGの基本原理を学ぶ (30分) 埋め込みベクトルに触れる RAGの検索部分(Retriever)に触れる インデックス検索の基礎 キーワード検索の基礎 ハイブリット検索(インデックス検索とキーワード検索の融合)に触れる 2部:langchainを使って、実践的なRAGに触れる (20分)
Chunking: 文章を小さな単位(チャンク)に分割するプロセス langchainの「チェイン」を使ったRAGの構築 RAGの定量的な評価(RAGAS)
🎯 それでは実際に手を動かしてみましょう!