Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
10分で学ぶ、RAGの仕組みと実践
Search
Marimo
April 30, 2025
Technology
0
1.2k
10分で学ぶ、RAGの仕組みと実践
2025/4/24 CDLE北海道主催RAGを実装してみよう!ミニハンズオン会のセミナー資料です
Marimo
April 30, 2025
Tweet
Share
More Decks by Marimo
See All by Marimo
いま注目のAIエージェントを作ってみよう
supermarimobros
0
440
ゼロから学ぶ! MCP入門ハンズオン
supermarimobros
1
980
Other Decks in Technology
See All in Technology
JAZUG 15周年記念 × JAT「AI Agent開発者必見:"今"のOracle技術で拡張するAzure × OCIの共存アーキテクチャ」
shisyu_gaku
0
130
動画データのポテンシャルを引き出す! Databricks と AI活用への奮闘記(現在進行形)
databricksjapan
0
150
研究開発部メンバーの働き⽅ / Sansan R&D Profile
sansan33
PRO
3
20k
リーダーになったら未来を語れるようになろう/Speak the Future
sanogemaru
0
310
Optuna DashboardにおけるPLaMo2連携機能の紹介 / PFN LLM セミナー
pfn
PRO
2
910
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
11
78k
PLaMo2シリーズのvLLM実装 / PFN LLM セミナー
pfn
PRO
2
1k
GopherCon Tour 概略
logica0419
2
190
VCC 2025 Write-up
bata_24
0
180
Modern_Data_Stack最新動向クイズ_買収_AI_激動の2025年_.pdf
sagara
0
220
多野優介
tanoyusuke
1
470
Where will it converge?
ibknadedeji
0
190
Featured
See All Featured
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
For a Future-Friendly Web
brad_frost
180
9.9k
Making the Leap to Tech Lead
cromwellryan
135
9.5k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
Typedesign – Prime Four
hannesfritz
42
2.8k
The Power of CSS Pseudo Elements
geoffreycrofte
79
6k
Mobile First: as difficult as doing things right
swwweet
224
10k
Git: the NoSQL Database
bkeepers
PRO
431
66k
The Language of Interfaces
destraynor
162
25k
Testing 201, or: Great Expectations
jmmastey
45
7.7k
The Straight Up "How To Draw Better" Workshop
denniskardys
237
140k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.4k
Transcript
RAGを実装してみよう!ミニハンズオン会 10分で学ぶ、RAGの仕組みと実践 CDLE北海道 池田広樹
自己紹介 池田 広樹 札幌市在住のエンジニア 大学時代に生化学分野で多変量解析を経験 代謝物の網羅的解析の分野 昨年、 「E資格チャレンジ」でE資格取得 その他、AIコンペのKaggleや松尾研LLM2024など に参加してます
①RAGの概要
①RAGの概要 LLMが外部知識に基づき回答する技術 最新の知識を反映、ハルシネーションを抑えるなどの効果 検索部位(Retriever)と生成部位(Generation)に分かれます 池田広樹って何者? 問い合わせ(クエリ) DB 外部知識 池田広樹は札幌在住のエン ジニアで・・・
池田広樹はPython/Flutter が得意です・・ 関連した文章 検索部位 (Retriever) RAG (Retrieval-Augmented Generation: 検索拡張生成)
①RAGの概要 池田広樹は札幌在住のエン ジニアで・・・ 池田広樹はPython/Flutter が得意です・・ 関連した文章 池田広樹って何者? 以下の情報を参照して答えてく ださい 池田広樹は札幌在住のエン
ジニアで・・・ 池 田 広 樹 は Python/Flutter が得意です・・ 池田広樹は札幌在住 のエンジニアで、 Python/Flutterが得 意です。 生成部分 (Generation) RAG (Retrieval-Augmented Generation: 検索拡張生成) LLMが外部知識に基づき回答する技術 最新の知識を反映、ハルシネーションを抑えるなどの効果 検索部位(Retriever)と生成部位(Generation)に分かれます
②検索部位(Retriever)
RAGは検索が重要 → どれだけ問い合わせ(クエリ)に関連した文章を見つけられるか ②検索部位(Retriever) インデックス検索 埋め込みベクトルの類似度・距離計算 コサイン類似度, ユークリッド距離(L2ノルム) ... キーワード検索
単語の出現頻度に基づいて類似度を計算 TF-IDF, BM25 知識グラフ GraphRAG
②検索部位(Retriever) インデックス検索 埋め込みベクトルの類似度・距離計算 コサイン類似度, ユークリッド距離(L2ノルム)... 意味的に似てる 意味的に似てない 池田広樹って何者? [0.0228, -0.1749,
0.1850, -0.1225, 0.1583, -0.6414, -0.0728, 0.6913] 埋め込みモデルによってベクトル変換 池田広樹は札幌在住のエンジニアで・・・ 池田広樹って何者? CDLE北海道では、北海道でAIに興味のある方々を・・・
②検索部位(Retriever) キーワード検索 単語の出現頻度に基づいて類似度を計算 TF-IDF, BM25 池田広樹って何者? [池田, 広樹, 何者] 池田広樹は札幌在住のエンジニアで・・・
[池田, 広樹, 札幌, 在住, エンジニア...] CDLE北海道では、北海道でAIに興味のある方々を・・・ [CDLE北海道, 北海道, AI, 興味, ある, 方々...] 単語が一致するほどスコアが高く、 珍しい単語はスコアが高い 高スコア 低スコア
③ハンズオンの流れ
③ハンズオンの流れ 1部:RAGの基本原理を学ぶ (30分) 埋め込みベクトルに触れる RAGの検索部分(Retriever)に触れる インデックス検索の基礎 キーワード検索の基礎 ハイブリット検索(インデックス検索とキーワード検索の融合)に触れる 2部:langchainを使って、実践的なRAGに触れる (20分)
Chunking: 文章を小さな単位(チャンク)に分割するプロセス langchainの「チェイン」を使ったRAGの構築 RAGの定量的な評価(RAGAS)
🎯 それでは実際に手を動かしてみましょう!