Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Oh, you're so random
Search
Vicent Martí
March 25, 2012
Programming
14
2.6k
Oh, you're so random
Randomness and pink ponies in Codemotion Rome 2012
Vicent Martí
March 25, 2012
Tweet
Share
More Decks by Vicent Martí
See All by Vicent Martí
Unicorns Die With Bullets Made of Glitter
tanoku
6
560
Threedee Tales From Urban Bohemia
tanoku
3
830
My Mom told me that Git doesn't scale
tanoku
28
1.9k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Ruby is Unlike a Banana
tanoku
97
11k
A talk about libgit2
tanoku
11
1.7k
Other Decks in Programming
See All in Programming
Learn CPU architecture with Assembly
akkeylab
1
1.3k
詳しくない分野でのVibe Codingで困ったことと学び/vibe-coding-in-unfamiliar-area
shibayu36
3
3k
Build your own WebP codec in Swift
kishikawakatsumi
2
870
Model Pollution
hschwentner
1
180
育てるアーキテクチャ:戦い抜くPythonマイクロサービスの設計と進化戦略
fujidomoe
1
150
気づいて!アプリからのSOS 〜App Store Connect APIで始めるパフォーマンス健康診断〜
waka12
0
260
CSC305 Lecture 01
javiergs
PRO
1
380
アメ車でサンノゼを走ってきたよ!
s_shimotori
0
120
Pythonスレッドとは結局何なのか? CPython実装から見るNoGIL時代の変化
curekoshimizu
4
1.2k
10年もののAPIサーバーにおけるCI/CDの改善の奮闘
mbook
0
690
猫と暮らすネットワークカメラ生活🐈 ~Vision frameworkでペットを愛でよう~ / iOSDC Japan 2025
yutailang0119
0
210
WebエンジニアがSwiftをブラウザで動かすプレイグラウンドを作ってみた
ohmori_yusuke
0
170
Featured
See All Featured
Thoughts on Productivity
jonyablonski
70
4.9k
Unsuck your backbone
ammeep
671
58k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
32
2.2k
Why Our Code Smells
bkeepers
PRO
339
57k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
9
840
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
19
1.2k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
KATA
mclloyd
32
14k
Docker and Python
trallard
46
3.6k
Transcript
None
select a random element
select a random element ‘tis one is ok.
None
None
Information Theory
hard TOPIC Information Theory
hard TOPIC dumb SPEAKER + Information Theory
0≤H(X)≤1 where X is a discrete random variable
0≤H(X)≤1 where X is a discrete random variable unpredictable
0≤H(X)≤1 where X is a discrete random variable unpredictable always
the same
None
ask a question.
None
bool is_random(char *bytes, size_t n) { }
bool is_random(char *bytes, size_t n) { } AGHHH
UNIFORM distribution
UNIFORM distribution
select a random element array[rand() % array.size]
select a random element array[rand() % array.size] UNIFORM distribution
select a random element array[rand() % array.size] UNIFORM distribution
select a random element array[rand() % array.size] UNIFORM distribution AGHHH
This is how you kill the RANDOM pnrg array
This is how you kill the RANDOM a pnrg array
This is how you kill the RANDOM a pnrg array
This is how you kill the RANDOM a a pnrg
array
This is how you kill the RANDOM a a pnrg
array
This is how you kill the RANDOM a a a
pnrg array
This is how you kill the RANDOM a a a
pnrg array
This is how you kill the RANDOM a a a
pnrg array
This is how you kill the RANDOM a a a
b pnrg array
This is how you kill the RANDOM a a a
b pnrg array
This is how you kill the RANDOM a a a
b b pnrg array
This is how you kill the RANDOM a a a
b b pnrg array
This is how you kill the RANDOM a a a
b b pnrg array
This is how you kill the RANDOM a a a
b b pnrg array
how to FIX:
how to FIX: 1. Random is hard
how to FIX: 1. Random is hard 2. Run away
how to FIX: 1. Random is hard 2. Run away
Math.random() // between 0.0 and 1.0 Javascript
how to FIX: 1. Random is hard 2. Run away
how to FIX: 1. Random is hard 2. Run away
prng.rand(5..9) #=> one of [5, 6, 7, 8, 9] prng.rand(5...9) #=> one of [5, 6, 7, 8] Ruby
Good.
Good. (but I don’t care)
None
“PRNGs and Hash functions are in the same family of
algorithms”
None
hash tables out of nowhere!
hash tables out of nowhere! O(1)
hash tables out of nowhere! O(1) uniform
pathological average data set: O(1)
pathological average data set: O(1)
pathological average data set: O(1) O(n)
ONE fix
ONE fix INT_MAX % size == 0
collide make them
collide make them • Brute force
collide make them • Brute force • MITM
collide make them • Brute force • MITM • Equivalent
substrings
collide make them • Brute force • MITM • Equivalent
substrings
collide make them • Brute force • MITM • Equivalent
substrings
collide make them • Brute force • MITM • Equivalent
substrings
collide make them • Brute force • MITM • Equivalent
substrings
collide make them • Brute force • MITM • Equivalent
substrings
problem & that’s a
problem & that’s a painful comparisons
problem & that’s a painful comparisons ~700ms responses
MANY fixes
MANY fixes (but only one is right)
MANY fixes (but only one is right) 1. Limiting request
size
this is bad and you should feel bad! MANY fixes
(but only one is right) 1. Limiting request size
MANY fixes (but only one is right) 2. Changing the
hash table
MANY fixes (but only one is right) 2. Changing the
hash table (no comment)
MANY fixes (but only one is right) 3. Bring back
the random
None
“Randomness is too important to be left to chance”
Thanks. “Randomness is too important to be left to chance”