Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Evolution of a Real-Time Web Analytics Platform
Search
Geoff Wagstaff
October 18, 2013
Technology
1
360
Evolution of a Real-Time Web Analytics Platform
Talk about data stores in use at GoSquared at the AllYourBase conference.
Geoff Wagstaff
October 18, 2013
Tweet
Share
More Decks by Geoff Wagstaff
See All by Geoff Wagstaff
GoSquared Presentation at AWS for Startups
thedeveloper
1
640
Other Decks in Technology
See All in Technology
生まれ変わった AWS Security Hub (Preview) を紹介 #reInforce_osaka / reInforce New Security Hub
masahirokawahara
0
480
いつの間にか入れ替わってる!?新しいAWS Security Hubとは?
cmusudakeisuke
0
130
無意味な開発生産性の議論から抜け出すための予兆検知とお金とAI
i35_267
5
13k
赤煉瓦倉庫勉強会「Databricksを選んだ理由と、絶賛真っ只中のデータ基盤移行体験記」
ivry_presentationmaterials
2
370
KubeCon + CloudNativeCon Japan 2025 Recap by CA
ponkio_o
PRO
0
300
Lakebaseを使ったAIエージェントを実装してみる
kameitomohiro
0
130
タイミーのデータモデリング事例と今後のチャレンジ
ttccddtoki
6
2.4k
関数型プログラミングで 「脳がバグる」を乗り越える
manabeai
1
190
面倒な作業はAIにおまかせ。Flutter開発をスマートに効率化
ruideengineer
0
260
「クラウドコスト絶対削減」を支える技術—FinOpsを超えた徹底的なクラウドコスト削減の実践論
delta_tech
4
170
【5分でわかる】セーフィー エンジニア向け会社紹介
safie_recruit
0
27k
CDKTFについてざっくり理解する!!~CloudFormationからCDKTFへ変換するツールも作ってみた~
masakiokuda
1
150
Featured
See All Featured
Balancing Empowerment & Direction
lara
1
430
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
Being A Developer After 40
akosma
90
590k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
Visualization
eitanlees
146
16k
4 Signs Your Business is Dying
shpigford
184
22k
Art, The Web, and Tiny UX
lynnandtonic
299
21k
It's Worth the Effort
3n
185
28k
How to train your dragon (web standard)
notwaldorf
95
6.1k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
690
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
Thoughts on Productivity
jonyablonski
69
4.7k
Transcript
The Evolution of a Real-Time Analytics Platform Geoff Wagstaff @TheDeveloper
The Now dashboard
The Trends dashboard
Building Real-Time Analytics Behind the “Now” dashboard
Back in 2009 1 server LAMP stack Conventional hosting
LiveStats v1
None
Meltdown!
Problem? First taste of scale WRITES
Reads are easy to scale Primary Writes Replica 1 Replica
2 Replica 3 Reads Reads Reads
Writes? Not so much. Primary MANY WRITES! Replica 1 Replica
2 Replica 3 Reads Reads Reads :(
Scale Horizontally
Node Node Node Requests Requests Requests NginX -> PHP-FPM <-->
Memcache
Problems
Stupidly high data transfer: several TB per day DB ->
app -> DB round trips High latency on DB ops Race conditions
Redis to the rescue! “Advanced in-memory key-value store”
Rich Data types
Rich Data types Keys Hashes Lists Sets Sorted Sets GET
SET HGET HSET HMSET LPUSH LPOP BLPOP SADD SREM SRANGE ZADD ZREM ZRANGE ZINTERSTORE
Distributed locks Service Service Service Fast counters Fan-out Pub/Sub broadcast
Message queues redis-1 redis-2 Solved concurrency problems
ACID
A C I D tomic onsistent solated urable MySQL MongoDB
Other ACID DBs:
Fast
Fast Redis 2.6.16 on 2.4GHz i7 MBP
Single-process, one per core Run on m1.medium - 1 core,
3.5GB memory Redis cluster is coming! Now on Elasticache Redis deployment
Behind the “Trends” dashboard Building Historical Analytics
Trends v1
Sharded MySQL from outset Aging Unreliable Trends v1
The Trends dashboard
MongoDB vs Cassandra
MongoDB Document store: no schema, flexible Compelling replication & sharding
features Fast in-place field updates similar to Redis
Attempt #1: Store & aggregate Document for each list item,
timestamp and site Aggregation framework: match, group, sort Collection per list type Flexible Made app simpler Huge number of documents Slow aggregate queries: ~1s+ ✔ ✔ X X
Attempt #2 Document per list, timestamp and site Collection per
list type Faster lookups (no aggregation) Fewer documents Smaller _id Document size limit Unordered High data transfer ✔ ✔ ✔ X X X
MongoStat
Downsides High random I/O Document size & relocation Fragmentation Database
lock
K.O. MongoDB
Cassandra Distributed hash ring: masterless Linear scalability Built for scale
+ write throughput
CQL
CQL SELECT sql AS cql FROM mysql WHERE query_language =
“good” Not as scary as Column Families + Thrift SQL Schemas + Querying
CQL CREATE TABLE d_aggregate_day ( sid int, ts int, s
text, v counter PRIMARY KEY (sid, ts, s)) partition key cluster key Distributed counters!
B ASE
B A S E asically vailable oft-state ventually consistent
Eventual consistency isn’t a problem More efficient with the disk
Low maintenance Cheap
Redis + Cassandra = win Redis as a speed layer
+ aggregator for lists Cassandra as timeseries counter storage Collector Redis Cassandra Periodic flushes to Cassandra
Exploit DBs strengths Build an indestructible service Use the best
tools for the job
Thanks! Geoff Wagstaff @TheDeveloper engineering.gosquared.com