Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Evolution of a Real-Time Web Analytics Platform
Search
Geoff Wagstaff
October 18, 2013
Technology
1
350
Evolution of a Real-Time Web Analytics Platform
Talk about data stores in use at GoSquared at the AllYourBase conference.
Geoff Wagstaff
October 18, 2013
Tweet
Share
More Decks by Geoff Wagstaff
See All by Geoff Wagstaff
GoSquared Presentation at AWS for Startups
thedeveloper
1
630
Other Decks in Technology
See All in Technology
Cloudflareで実現する AIエージェント ワークフロー基盤
kmd09
0
290
iPadOS18でフローティングタブバーを解除してみた
sansantech
PRO
1
150
2025年に挑戦したいこと
molmolken
0
170
2025年の挑戦 コーポレートエンジニアの技術広報/techpr5
nishiuma
0
150
なぜfreeeはハブ・アンド・スポーク型の データメッシュアーキテクチャにチャレンジするのか?
shinichiro_joya
2
510
デジタルアイデンティティ人材育成推進ワーキンググループ 翻訳サブワーキンググループ 活動報告 / 20250114-OIDF-J-EduWG-TranslationSWG
oidfj
0
550
Amazon Q Developerで.NET Frameworkプロジェクトをモダナイズしてみた
kenichirokimura
1
200
月間60万ユーザーを抱える 個人開発サービス「Walica」の 技術スタック変遷
miyachin
1
150
メンバーがオーナーシップを発揮しやすいチームづくり
ham0215
2
180
KMP with Crashlytics
sansantech
PRO
0
250
タイミーのデータ活用を支えるdbt Cloud導入とこれから
ttccddtoki
1
270
生成AIのビジネス活用
seosoft
0
110
Featured
See All Featured
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
A Tale of Four Properties
chriscoyier
157
23k
Done Done
chrislema
182
16k
Visualization
eitanlees
146
15k
Code Review Best Practice
trishagee
65
17k
Learning to Love Humans: Emotional Interface Design
aarron
274
40k
A Philosophy of Restraint
colly
203
16k
Writing Fast Ruby
sferik
628
61k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
39
1.9k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
365
25k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
132
33k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.6k
Transcript
The Evolution of a Real-Time Analytics Platform Geoff Wagstaff @TheDeveloper
The Now dashboard
The Trends dashboard
Building Real-Time Analytics Behind the “Now” dashboard
Back in 2009 1 server LAMP stack Conventional hosting
LiveStats v1
None
Meltdown!
Problem? First taste of scale WRITES
Reads are easy to scale Primary Writes Replica 1 Replica
2 Replica 3 Reads Reads Reads
Writes? Not so much. Primary MANY WRITES! Replica 1 Replica
2 Replica 3 Reads Reads Reads :(
Scale Horizontally
Node Node Node Requests Requests Requests NginX -> PHP-FPM <-->
Memcache
Problems
Stupidly high data transfer: several TB per day DB ->
app -> DB round trips High latency on DB ops Race conditions
Redis to the rescue! “Advanced in-memory key-value store”
Rich Data types
Rich Data types Keys Hashes Lists Sets Sorted Sets GET
SET HGET HSET HMSET LPUSH LPOP BLPOP SADD SREM SRANGE ZADD ZREM ZRANGE ZINTERSTORE
Distributed locks Service Service Service Fast counters Fan-out Pub/Sub broadcast
Message queues redis-1 redis-2 Solved concurrency problems
ACID
A C I D tomic onsistent solated urable MySQL MongoDB
Other ACID DBs:
Fast
Fast Redis 2.6.16 on 2.4GHz i7 MBP
Single-process, one per core Run on m1.medium - 1 core,
3.5GB memory Redis cluster is coming! Now on Elasticache Redis deployment
Behind the “Trends” dashboard Building Historical Analytics
Trends v1
Sharded MySQL from outset Aging Unreliable Trends v1
The Trends dashboard
MongoDB vs Cassandra
MongoDB Document store: no schema, flexible Compelling replication & sharding
features Fast in-place field updates similar to Redis
Attempt #1: Store & aggregate Document for each list item,
timestamp and site Aggregation framework: match, group, sort Collection per list type Flexible Made app simpler Huge number of documents Slow aggregate queries: ~1s+ ✔ ✔ X X
Attempt #2 Document per list, timestamp and site Collection per
list type Faster lookups (no aggregation) Fewer documents Smaller _id Document size limit Unordered High data transfer ✔ ✔ ✔ X X X
MongoStat
Downsides High random I/O Document size & relocation Fragmentation Database
lock
K.O. MongoDB
Cassandra Distributed hash ring: masterless Linear scalability Built for scale
+ write throughput
CQL
CQL SELECT sql AS cql FROM mysql WHERE query_language =
“good” Not as scary as Column Families + Thrift SQL Schemas + Querying
CQL CREATE TABLE d_aggregate_day ( sid int, ts int, s
text, v counter PRIMARY KEY (sid, ts, s)) partition key cluster key Distributed counters!
B ASE
B A S E asically vailable oft-state ventually consistent
Eventual consistency isn’t a problem More efficient with the disk
Low maintenance Cheap
Redis + Cassandra = win Redis as a speed layer
+ aggregator for lists Cassandra as timeseries counter storage Collector Redis Cassandra Periodic flushes to Cassandra
Exploit DBs strengths Build an indestructible service Use the best
tools for the job
Thanks! Geoff Wagstaff @TheDeveloper engineering.gosquared.com