Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Evolution of a Real-Time Web Analytics Platform
Search
Geoff Wagstaff
October 18, 2013
Technology
1
360
Evolution of a Real-Time Web Analytics Platform
Talk about data stores in use at GoSquared at the AllYourBase conference.
Geoff Wagstaff
October 18, 2013
Tweet
Share
More Decks by Geoff Wagstaff
See All by Geoff Wagstaff
GoSquared Presentation at AWS for Startups
thedeveloper
1
660
Other Decks in Technology
See All in Technology
Okta Identity Governanceで実現する最小権限の原則 / Implementing the Principle of Least Privilege with Okta Identity Governance
tatsumin39
0
180
re:Inventに行くまでにやっておきたいこと
nagisa53
0
580
あなたの知らない Linuxカーネル脆弱性の世界
recruitengineers
PRO
3
160
だいたい分かった気になる 『SREの知識地図』 / introduction-to-sre-knowledge-map-book
katsuhisa91
PRO
3
1.5k
もう外には出ない。より快適なフルリモート環境を目指して
mottyzzz
13
11k
AWS DMS で SQL Server を移行してみた/aws-dms-sql-server-migration
emiki
0
250
abema-trace-sampling-observability-cost-optimization
tetsuya28
0
200
東京大学「Agile-X」のFPGA AIデザインハッカソンを制したソニーのAI最適化
sony
0
140
OCIjp_Oracle AI World_Recap
shinpy
1
180
生成AI時代のPythonセキュリティとガバナンス
abenben
0
140
DSPy入門
tomehirata
2
340
CREが作る自己解決サイクルSlackワークフローに組み込んだAIによる社内ヘルプデスク改革 #cre_meetup
bengo4com
0
350
Featured
See All Featured
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
How to train your dragon (web standard)
notwaldorf
97
6.3k
Stop Working from a Prison Cell
hatefulcrawdad
272
21k
Become a Pro
speakerdeck
PRO
29
5.6k
Balancing Empowerment & Direction
lara
5
700
The Cost Of JavaScript in 2023
addyosmani
55
9.1k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
930
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.7k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.1k
How STYLIGHT went responsive
nonsquared
100
5.9k
GraphQLとの向き合い方2022年版
quramy
49
14k
Transcript
The Evolution of a Real-Time Analytics Platform Geoff Wagstaff @TheDeveloper
The Now dashboard
The Trends dashboard
Building Real-Time Analytics Behind the “Now” dashboard
Back in 2009 1 server LAMP stack Conventional hosting
LiveStats v1
None
Meltdown!
Problem? First taste of scale WRITES
Reads are easy to scale Primary Writes Replica 1 Replica
2 Replica 3 Reads Reads Reads
Writes? Not so much. Primary MANY WRITES! Replica 1 Replica
2 Replica 3 Reads Reads Reads :(
Scale Horizontally
Node Node Node Requests Requests Requests NginX -> PHP-FPM <-->
Memcache
Problems
Stupidly high data transfer: several TB per day DB ->
app -> DB round trips High latency on DB ops Race conditions
Redis to the rescue! “Advanced in-memory key-value store”
Rich Data types
Rich Data types Keys Hashes Lists Sets Sorted Sets GET
SET HGET HSET HMSET LPUSH LPOP BLPOP SADD SREM SRANGE ZADD ZREM ZRANGE ZINTERSTORE
Distributed locks Service Service Service Fast counters Fan-out Pub/Sub broadcast
Message queues redis-1 redis-2 Solved concurrency problems
ACID
A C I D tomic onsistent solated urable MySQL MongoDB
Other ACID DBs:
Fast
Fast Redis 2.6.16 on 2.4GHz i7 MBP
Single-process, one per core Run on m1.medium - 1 core,
3.5GB memory Redis cluster is coming! Now on Elasticache Redis deployment
Behind the “Trends” dashboard Building Historical Analytics
Trends v1
Sharded MySQL from outset Aging Unreliable Trends v1
The Trends dashboard
MongoDB vs Cassandra
MongoDB Document store: no schema, flexible Compelling replication & sharding
features Fast in-place field updates similar to Redis
Attempt #1: Store & aggregate Document for each list item,
timestamp and site Aggregation framework: match, group, sort Collection per list type Flexible Made app simpler Huge number of documents Slow aggregate queries: ~1s+ ✔ ✔ X X
Attempt #2 Document per list, timestamp and site Collection per
list type Faster lookups (no aggregation) Fewer documents Smaller _id Document size limit Unordered High data transfer ✔ ✔ ✔ X X X
MongoStat
Downsides High random I/O Document size & relocation Fragmentation Database
lock
K.O. MongoDB
Cassandra Distributed hash ring: masterless Linear scalability Built for scale
+ write throughput
CQL
CQL SELECT sql AS cql FROM mysql WHERE query_language =
“good” Not as scary as Column Families + Thrift SQL Schemas + Querying
CQL CREATE TABLE d_aggregate_day ( sid int, ts int, s
text, v counter PRIMARY KEY (sid, ts, s)) partition key cluster key Distributed counters!
B ASE
B A S E asically vailable oft-state ventually consistent
Eventual consistency isn’t a problem More efficient with the disk
Low maintenance Cheap
Redis + Cassandra = win Redis as a speed layer
+ aggregator for lists Cassandra as timeseries counter storage Collector Redis Cassandra Periodic flushes to Cassandra
Exploit DBs strengths Build an indestructible service Use the best
tools for the job
Thanks! Geoff Wagstaff @TheDeveloper engineering.gosquared.com