Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Evolution of a Real-Time Web Analytics Platform
Search
Geoff Wagstaff
October 18, 2013
Technology
1
350
Evolution of a Real-Time Web Analytics Platform
Talk about data stores in use at GoSquared at the AllYourBase conference.
Geoff Wagstaff
October 18, 2013
Tweet
Share
More Decks by Geoff Wagstaff
See All by Geoff Wagstaff
GoSquared Presentation at AWS for Startups
thedeveloper
1
640
Other Decks in Technology
See All in Technology
ソフトウェア開発現代史: "LeanとDevOpsの科学"の「科学」とは何か? - DORA Report 10年の変遷を追って - #DevOpsDaysTokyo
takabow
0
190
Beyond {shiny}: The Future of Mobile Apps with R
colinfay
1
330
開発視点でAWS Signerを考えてみよう!! ~コード署名のその先へ~
masakiokuda
3
130
IVRyにおけるNLP活用と NLP2025の関連論文紹介
keisukeosone
0
180
Micro Frontends: Necessity, Implementation, and Challenges
rainerhahnekamp
0
320
AIエージェントの地上戦 〜開発計画と運用実践 / 2025/04/08 Findy W&Bミートアップ #19
smiyawaki0820
25
8.4k
Android는 어떻게 화면을 그릴까?
davidkwon7
0
100
CBになったのでEKSのこともっと知ってもらいたい!
daitak
1
150
Amazon S3 Tables + Amazon Athena / Apache Iceberg
okaru
0
230
AWSのマルチアカウント管理 ベストプラクティス最新版 2025 / Multi-Account management on AWS best practice 2025
ohmura
3
180
OSSコントリビュートをphp-srcメンテナの立場から語る / OSS Contribute
sakitakamachi
0
1.2k
はてなの開発20年史と DevOpsの歩み / DevOpsDays Tokyo 2025 Keynote
daiksy
5
1.3k
Featured
See All Featured
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
32
4.9k
Building an army of robots
kneath
304
45k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Six Lessons from altMBA
skipperchong
27
3.7k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
34
2.2k
VelocityConf: Rendering Performance Case Studies
addyosmani
328
24k
Become a Pro
speakerdeck
PRO
27
5.3k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
2.9k
Building Applications with DynamoDB
mza
94
6.3k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
47
2.4k
Transcript
The Evolution of a Real-Time Analytics Platform Geoff Wagstaff @TheDeveloper
The Now dashboard
The Trends dashboard
Building Real-Time Analytics Behind the “Now” dashboard
Back in 2009 1 server LAMP stack Conventional hosting
LiveStats v1
None
Meltdown!
Problem? First taste of scale WRITES
Reads are easy to scale Primary Writes Replica 1 Replica
2 Replica 3 Reads Reads Reads
Writes? Not so much. Primary MANY WRITES! Replica 1 Replica
2 Replica 3 Reads Reads Reads :(
Scale Horizontally
Node Node Node Requests Requests Requests NginX -> PHP-FPM <-->
Memcache
Problems
Stupidly high data transfer: several TB per day DB ->
app -> DB round trips High latency on DB ops Race conditions
Redis to the rescue! “Advanced in-memory key-value store”
Rich Data types
Rich Data types Keys Hashes Lists Sets Sorted Sets GET
SET HGET HSET HMSET LPUSH LPOP BLPOP SADD SREM SRANGE ZADD ZREM ZRANGE ZINTERSTORE
Distributed locks Service Service Service Fast counters Fan-out Pub/Sub broadcast
Message queues redis-1 redis-2 Solved concurrency problems
ACID
A C I D tomic onsistent solated urable MySQL MongoDB
Other ACID DBs:
Fast
Fast Redis 2.6.16 on 2.4GHz i7 MBP
Single-process, one per core Run on m1.medium - 1 core,
3.5GB memory Redis cluster is coming! Now on Elasticache Redis deployment
Behind the “Trends” dashboard Building Historical Analytics
Trends v1
Sharded MySQL from outset Aging Unreliable Trends v1
The Trends dashboard
MongoDB vs Cassandra
MongoDB Document store: no schema, flexible Compelling replication & sharding
features Fast in-place field updates similar to Redis
Attempt #1: Store & aggregate Document for each list item,
timestamp and site Aggregation framework: match, group, sort Collection per list type Flexible Made app simpler Huge number of documents Slow aggregate queries: ~1s+ ✔ ✔ X X
Attempt #2 Document per list, timestamp and site Collection per
list type Faster lookups (no aggregation) Fewer documents Smaller _id Document size limit Unordered High data transfer ✔ ✔ ✔ X X X
MongoStat
Downsides High random I/O Document size & relocation Fragmentation Database
lock
K.O. MongoDB
Cassandra Distributed hash ring: masterless Linear scalability Built for scale
+ write throughput
CQL
CQL SELECT sql AS cql FROM mysql WHERE query_language =
“good” Not as scary as Column Families + Thrift SQL Schemas + Querying
CQL CREATE TABLE d_aggregate_day ( sid int, ts int, s
text, v counter PRIMARY KEY (sid, ts, s)) partition key cluster key Distributed counters!
B ASE
B A S E asically vailable oft-state ventually consistent
Eventual consistency isn’t a problem More efficient with the disk
Low maintenance Cheap
Redis + Cassandra = win Redis as a speed layer
+ aggregator for lists Cassandra as timeseries counter storage Collector Redis Cassandra Periodic flushes to Cassandra
Exploit DBs strengths Build an indestructible service Use the best
tools for the job
Thanks! Geoff Wagstaff @TheDeveloper engineering.gosquared.com