Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Evolution of a Real-Time Web Analytics Platform
Search
Geoff Wagstaff
October 18, 2013
Technology
1
350
Evolution of a Real-Time Web Analytics Platform
Talk about data stores in use at GoSquared at the AllYourBase conference.
Geoff Wagstaff
October 18, 2013
Tweet
Share
More Decks by Geoff Wagstaff
See All by Geoff Wagstaff
GoSquared Presentation at AWS for Startups
thedeveloper
1
630
Other Decks in Technology
See All in Technology
JEDAI Meetup! Databricks AI/BI概要
databricksjapan
0
150
室長と気ままに学ぶマイクロソフトのビジネスアプリケーションとビジネスプロセス
ryoheig0405
0
370
Building Products in the LLM Era
ymatsuwitter
10
5.5k
あれは良かった、あれは苦労したB2B2C型SaaSの新規開発におけるCloud Spanner
hirohito1108
2
630
ハッキングの世界に迫る~攻撃者の思考で考えるセキュリティ~
nomizone
13
5.2k
2/18/25: Java meets AI: Build LLM-Powered Apps with LangChain4j
edeandrea
PRO
0
130
Oracle Cloud Infrastructure:2025年2月度サービス・アップデート
oracle4engineer
PRO
1
220
Classmethod AI Talks(CATs) #16 司会進行スライド(2025.02.12) / classmethod-ai-talks-aka-cats_moderator-slides_vol16_2025-02-12
shinyaa31
0
110
運用しているアプリケーションのDBのリプレイスをやってみた
miura55
1
740
Data-centric AI入門第6章:Data-centric AIの実践例
x_ttyszk
1
410
CZII - CryoET Object Identification 参加振り返り・解法共有
tattaka
0
380
オブザーバビリティの観点でみるAWS / AWS from observability perspective
ymotongpoo
8
1.5k
Featured
See All Featured
Testing 201, or: Great Expectations
jmmastey
42
7.2k
Side Projects
sachag
452
42k
A better future with KSS
kneath
238
17k
Typedesign – Prime Four
hannesfritz
40
2.5k
Rails Girls Zürich Keynote
gr2m
94
13k
For a Future-Friendly Web
brad_frost
176
9.5k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.3k
Producing Creativity
orderedlist
PRO
344
39k
Being A Developer After 40
akosma
89
590k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
[RailsConf 2023] Rails as a piece of cake
palkan
53
5.2k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Transcript
The Evolution of a Real-Time Analytics Platform Geoff Wagstaff @TheDeveloper
The Now dashboard
The Trends dashboard
Building Real-Time Analytics Behind the “Now” dashboard
Back in 2009 1 server LAMP stack Conventional hosting
LiveStats v1
None
Meltdown!
Problem? First taste of scale WRITES
Reads are easy to scale Primary Writes Replica 1 Replica
2 Replica 3 Reads Reads Reads
Writes? Not so much. Primary MANY WRITES! Replica 1 Replica
2 Replica 3 Reads Reads Reads :(
Scale Horizontally
Node Node Node Requests Requests Requests NginX -> PHP-FPM <-->
Memcache
Problems
Stupidly high data transfer: several TB per day DB ->
app -> DB round trips High latency on DB ops Race conditions
Redis to the rescue! “Advanced in-memory key-value store”
Rich Data types
Rich Data types Keys Hashes Lists Sets Sorted Sets GET
SET HGET HSET HMSET LPUSH LPOP BLPOP SADD SREM SRANGE ZADD ZREM ZRANGE ZINTERSTORE
Distributed locks Service Service Service Fast counters Fan-out Pub/Sub broadcast
Message queues redis-1 redis-2 Solved concurrency problems
ACID
A C I D tomic onsistent solated urable MySQL MongoDB
Other ACID DBs:
Fast
Fast Redis 2.6.16 on 2.4GHz i7 MBP
Single-process, one per core Run on m1.medium - 1 core,
3.5GB memory Redis cluster is coming! Now on Elasticache Redis deployment
Behind the “Trends” dashboard Building Historical Analytics
Trends v1
Sharded MySQL from outset Aging Unreliable Trends v1
The Trends dashboard
MongoDB vs Cassandra
MongoDB Document store: no schema, flexible Compelling replication & sharding
features Fast in-place field updates similar to Redis
Attempt #1: Store & aggregate Document for each list item,
timestamp and site Aggregation framework: match, group, sort Collection per list type Flexible Made app simpler Huge number of documents Slow aggregate queries: ~1s+ ✔ ✔ X X
Attempt #2 Document per list, timestamp and site Collection per
list type Faster lookups (no aggregation) Fewer documents Smaller _id Document size limit Unordered High data transfer ✔ ✔ ✔ X X X
MongoStat
Downsides High random I/O Document size & relocation Fragmentation Database
lock
K.O. MongoDB
Cassandra Distributed hash ring: masterless Linear scalability Built for scale
+ write throughput
CQL
CQL SELECT sql AS cql FROM mysql WHERE query_language =
“good” Not as scary as Column Families + Thrift SQL Schemas + Querying
CQL CREATE TABLE d_aggregate_day ( sid int, ts int, s
text, v counter PRIMARY KEY (sid, ts, s)) partition key cluster key Distributed counters!
B ASE
B A S E asically vailable oft-state ventually consistent
Eventual consistency isn’t a problem More efficient with the disk
Low maintenance Cheap
Redis + Cassandra = win Redis as a speed layer
+ aggregator for lists Cassandra as timeseries counter storage Collector Redis Cassandra Periodic flushes to Cassandra
Exploit DBs strengths Build an indestructible service Use the best
tools for the job
Thanks! Geoff Wagstaff @TheDeveloper engineering.gosquared.com