Upgrade to Pro — share decks privately, control downloads, hide ads and more …

楕円曲線の有理点と BSD 予想

Avatar for Naoya Umezaki Naoya Umezaki
October 06, 2018
1.1k

楕円曲線の有理点と BSD 予想

MATHPOWER2018での講演スライド。 BSD予想についての解説。

Avatar for Naoya Umezaki

Naoya Umezaki

October 06, 2018
Tweet

Transcript

  1. ฏํ਺ͱཱํ਺ ฏํ਺ 1, 4, 9, 16, 25, 36, 49, 64,

    . . . ཱํ਺ 1, 8, 27, 64, 125, 216, 343, 512, . . . ฏํ਺ͱཱํ਺ͷ͕ࠩ1 ฏํ਺ͱཱํ਺ʹڬ·Εͨ།Ұͷ਺26
  2. ପԁۂઢ y2 = x3 + 1, (x, y) = (2,

    3) y2 = x3 − 2, (x, y) = (3, 5) ༗ཧ఺ x, y ࠲ඪ͕༗ཧ਺ͳ఺
  3. y2 = x3 + 1 P Q R P+Q P

    = (−1, 0), Q = (0, 1) PQ : y = x + 1 (x + 1)2 = x3 + 1 x = −1, 0, 2 R = (2, 3), P + Q = (2, −3)
  4. y2 = x3 + 1 P Q 2P P =

    (2, 3) yy′ = 3x2 ઀ઢ͸ y = 2(x − 2) + 3 = 2x − 1 (2x − 1)2 = x3 + 1 x = 0, 2 Q = (0, −1), 2P = (0, 1)
  5. y2 = x3 + 1 P Q R P +

    Q y2 = x3 + 1ͷ༗ཧ఺͸ (−1, 0), (0, ±1), (2, ±3), O ͷ6ݸɻ
  6. y2 = x3 − 2 P = (3, 5) 2P

    = (129/100, −383/1000) 3P = (164323/29241, −66234835/5000211) 4P = (2340922881/58675600, 113259286337279/44945509600) ༗ཧ఺͸nP ͷΈ
  7. y2 = x3 − 17x P = (−1, 4) 2P

    = (1089/16, −35871/64) 3P = (−4169764/1329409, 7264943878/1532808577) 4P = (1416749814529/82350633024, − 1637173839697065089/23631996457631232)
  8. y2 = x3 − 17x Q = (−4, 2) 2Q

    = (81/16, 423/64) 3Q = (−36481/9409, −2520436/912673) 4Q = (119093569/11451456, − 1193164200991/38751727104)
  9. y2 = x3 − 17x R = (0, 0) 2R

    = O ༗ཧ఺͸nP + mQ, nP + mQ + R Ͱશͯɻ
  10. ϞʔσϧϰΣΠϢ֊਺ ༗ཧ఺ͷʢແݶ෦෼ͷʣ࠷খͷੜ੒ݩͷݸ਺ 1. y2 = x3 + 1͸ϞʔσϧϰΣΠϢ֊਺͸0 2. y2

    = x3 − 2͸nP ͷܗͳͷͰϞʔσϧ ϰΣΠϢ֊਺1 3. y2 = x3 − 17x ͸nP + mQ ͷܗͳͷͰ ϞʔσϧϰΣΠϢ֊਺2
  11. E : y2 = x3 + 1 N3 (E)͸ mod

    3Ͱ (x, y) = (0, 0), (1, 0), (0, 1), (1, 1) 02 ̸= 03 + 1 02 = 13 + 1 12 = 03 + 1 12 ̸= 13 + 1
  12. E : y2 = x3 + 1 N3 (E)͸ mod

    2Ͱx = 0, 1, 2, y = 0, 1, 2 12 = 03 + 1, 22 = 03 + 1, 02 = 23 + 1 ͷ3ͭʹແݶԕ఺ΛՃ͑ͯ N3 (E) = 4
  13. E : y2 = x3 + 1 ∏ p Np

    (E) p Λߟ͑Δɻ N2 (E) 2 , N2 (E) 2 N3 (E) 3 , N2 (E) 2 N3 (E) 3 N5 (E) 5 , . . .
  14. Lؔ਺ L(s, E) = ∏ p 1 1 − (1

    + p − Np (E))p−s + p1−2s ϦʔϚϯθʔλؔ਺ͷପԁۂઢ൛ ζ(s) = ∏ p 1 1 − p−s
  15. Lؔ਺ L(1, E) = ∏ p 1 1 − (1

    + p − Np (E))p−1 + p1−2 = ∏ p 1 1 − p−1 − 1 + Np (E)p−1 + p−1 = ∏ p 1 Np (E)/p
  16. Birch and Swinnerton-Dyer༧૝ ▶ L(s, E)ͷs = 1Ͱͷॏෳ౓ͱ E ͷϞʔσϧϰΣΠϢ֊਺͕౳͍͠

    ▶ L(1, E) ̸= 0 ⇐⇒ ༗ཧ఺͕༗ݶ ෦෼తղܾ͋Γɻ ׬શʹղ͍ͨΒ100ສυϧ.ɻ