Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
楕円曲線の有理点と BSD 予想
Search
Naoya Umezaki
October 06, 2018
0
1.2k
楕円曲線の有理点と BSD 予想
MATHPOWER2018での講演スライド。 BSD予想についての解説。
Naoya Umezaki
October 06, 2018
Tweet
Share
More Decks by Naoya Umezaki
See All by Naoya Umezaki
証明支援系LEANに入門しよう
unaoya
1
2k
ミケル点とべズーの定理
unaoya
0
1k
すうがく徒のつどい@オンライン「ラマヌジャンのデルタ」
unaoya
0
720
合同式と幾何学
unaoya
0
2.2k
すうがく徒のつどい@オンライン「ヴェイユ予想とl進層のフーリエ変換」
unaoya
0
900
Egisonパターンマッチによる彩色
unaoya
1
630
関数等式と双対性
unaoya
1
820
直交多項式と表現論
unaoya
0
930
導来代数幾何入門
unaoya
0
1.1k
Featured
See All Featured
Mobile First: as difficult as doing things right
swwweet
225
10k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Designing for Performance
lara
610
69k
Fireside Chat
paigeccino
41
3.7k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
The Invisible Side of Design
smashingmag
302
51k
Context Engineering - Making Every Token Count
addyosmani
9
380
GitHub's CSS Performance
jonrohan
1032
470k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
Why You Should Never Use an ORM
jnunemaker
PRO
60
9.6k
Transcript
ପԁۂઢͷ༗ཧͱBSD༧ ക࡚@unaoya ͢͏͕͘ͿΜ͔ɺཧۭؒ τ ´ oπoζ MATHPOWER2018 10/6
ฏํͱཱํ ฏํ 1, 4, 9, 16, 25, 36, 49, 64,
. . . ཱํ 1, 8, 27, 64, 125, 216, 343, 512, . . . ฏํͱཱํͷ͕ࠩ1 ฏํͱཱํʹڬ·Εͨ།Ұͷ26
ପԁۂઢ y2 = x3 + 1, (x, y) = (2,
3) y2 = x3 − 2, (x, y) = (3, 5) ༗ཧ x, y ࠲ඪ͕༗ཧͳ
༗ཧͷ܈ P Q R P+Q P, Q ͕༗ཧ ઢPQ ༗ཧ
R ༗ཧ P + Q ༗ཧ
༗ཧͷ܈ P Q 2P P ͕༗ཧ ઢ༗ཧ Q ༗ཧ 2P
༗ཧ
y2 = x3 + 1 P Q R P+Q P
= (−1, 0), Q = (0, 1) PQ : y = x + 1 (x + 1)2 = x3 + 1 x = −1, 0, 2 R = (2, 3), P + Q = (2, −3)
y2 = x3 + 1 P Q 2P P =
(2, 3) yy′ = 3x2 ઢ y = 2(x − 2) + 3 = 2x − 1 (2x − 1)2 = x3 + 1 x = 0, 2 Q = (0, −1), 2P = (0, 1)
y2 = x3 + 1 P Q R P +
Q y2 = x3 + 1ͷ༗ཧ (−1, 0), (0, ±1), (2, ±3), O ͷ6ݸɻ
y2 = x3 − 2 P = (3, 5) 2P
= (129/100, −383/1000) 3P = (164323/29241, −66234835/5000211) 4P = (2340922881/58675600, 113259286337279/44945509600) ༗ཧnP ͷΈ
y2 = x3 − 17x P = (−1, 4) 2P
= (1089/16, −35871/64) 3P = (−4169764/1329409, 7264943878/1532808577) 4P = (1416749814529/82350633024, − 1637173839697065089/23631996457631232)
y2 = x3 − 17x Q = (−4, 2) 2Q
= (81/16, 423/64) 3Q = (−36481/9409, −2520436/912673) 4Q = (119093569/11451456, − 1193164200991/38751727104)
y2 = x3 − 17x R = (0, 0) 2R
= O ༗ཧnP + mQ, nP + mQ + R Ͱશͯɻ
ϞʔσϧϰΣΠϢ֊ ༗ཧͷʢແݶ෦ͷʣ࠷খͷੜݩͷݸ 1. y2 = x3 + 1ϞʔσϧϰΣΠϢ֊0 2. y2
= x3 − 2nP ͷܗͳͷͰϞʔσϧ ϰΣΠϢ֊1 3. y2 = x3 − 17x nP + mQ ͷܗͳͷͰ ϞʔσϧϰΣΠϢ֊2
mod pͷͷݸ ପԁۂઢE ͷ mod p ͷͷݸNp (E)Λ ͑Δɻ
E : y2 = x3 + 1 N3 (E) mod
3Ͱ (x, y) = (0, 0), (1, 0), (0, 1), (1, 1) 02 ̸= 03 + 1 02 = 13 + 1 12 = 03 + 1 12 ̸= 13 + 1
E : y2 = x3 + 1 N3 (E) mod
2Ͱx = 0, 1, 2, y = 0, 1, 2 12 = 03 + 1, 22 = 03 + 1, 02 = 23 + 1 ͷ3ͭʹແݶԕΛՃ͑ͯ N3 (E) = 4
E : y2 = x3 + 1 ∏ p Np
(E) p Λߟ͑Δɻ N2 (E) 2 , N2 (E) 2 N3 (E) 3 , N2 (E) 2 N3 (E) 3 N5 (E) 5 , . . .
E : y2 = x3 + 1
E : y2 = x3 − 2
E : y2 = x3 − 17x
∏ Np(E)/p
Lؔ L(s, E) = ∏ p 1 1 − (1
+ p − Np (E))p−s + p1−2s ϦʔϚϯθʔλؔͷପԁۂઢ൛ ζ(s) = ∏ p 1 1 − p−s
Lؔ L(1, E) = ∏ p 1 1 − (1
+ p − Np (E))p−1 + p1−2 = ∏ p 1 1 − p−1 − 1 + Np (E)p−1 + p−1 = ∏ p 1 Np (E)/p
Birch and Swinnerton-Dyer༧ ▶ L(s, E)ͷs = 1Ͱͷॏෳͱ E ͷϞʔσϧϰΣΠϢ֊͕͍͠
▶ L(1, E) ̸= 0 ⇐⇒ ༗ཧ͕༗ݶ ෦తղܾ͋Γɻ શʹղ͍ͨΒ100ສυϧ.ɻ
ࢀߟจݙ 1. ాޱ༤Ұ, ༗ཧͷ 2. Birch and Swinnerton-Dyer, Notes on
elliptic curves. II.