Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
NLTK Intro for PUGS
Search
Victor Neo
March 27, 2012
Programming
7
560
NLTK Intro for PUGS
Slides for the NLTK talk given on March 2012 for Python User Group SG Meetup.
Victor Neo
March 27, 2012
Tweet
Share
More Decks by Victor Neo
See All by Victor Neo
Django - The Next Steps
victorneo
5
620
DevOps: Python tools to get started
victorneo
9
13k
Git and Python workshop
victorneo
2
790
Other Decks in Programming
See All in Programming
primeNumberでのRBS導入の現在 && RBS::Traceでinline RBSを拡充してみた
mnmandahalf
0
260
External SecretsのさくらProvider初期実装を担当しています
logica0419
0
240
OpenNext + Hono on Cloudflare でイマドキWeb開発スタックを実現する
rokuosan
0
110
當開發遇上包裝:AI 如何讓產品從想法變成商品
clonn
0
2.6k
クラシルリワードにおける iOSアプリ開発の取り組み
funzin
1
810
抽象データ型について学んだ
ryounasso
0
210
『Python → TypeScript』オンボーディング奮闘記
takumi_tatsuno
1
140
Language Server と喋ろう – TSKaigi 2025
pizzacat83
2
670
バリデーションライブラリ徹底比較
nayuta999999
1
440
Proxmoxをまとめて管理できるコンソール作ってみました
karugamo
1
410
漸進。
ssssota
0
1.2k
eBPFを用いたAIネットワーク監視システム論文の実装 / eBPF Japan Meetup #4
yuukit
3
620
Featured
See All Featured
Automating Front-end Workflow
addyosmani
1370
200k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
The Invisible Side of Design
smashingmag
299
50k
Unsuck your backbone
ammeep
671
58k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.5k
Become a Pro
speakerdeck
PRO
28
5.4k
Music & Morning Musume
bryan
47
6.6k
Docker and Python
trallard
44
3.4k
Code Review Best Practice
trishagee
68
18k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
42
2.3k
The Straight Up "How To Draw Better" Workshop
denniskardys
233
140k
Transcript
Natural Language Toolkit @victorneo
Natural Language Processing
"the process of a computer extracting meaningful information from natural
language input and/or producing natural language output"
None
Getting started with NLTK
Open source Python modules, linguistic data and documentation for research
and development in natural language processing and text analytics, with distributions for Windows, Mac OSX and Linux. NLTK
None
installatio n # you might need numpy pip install nltk
# enter Python shell import nltk nltk.download()
None
packages # For Part of Speech tagging maxent_treebank_pos_tagger # Get
a list of stopwords stopwords # Brown corpus to play around brown
Preparing data / corpus
tokens NLTK works on Tokens, for example, "Hello World!" will
be tokenized to: ['Hello', 'World', '!'] The built-in tokenizer for most use cases: nltk.word_tokenize("Hello World!")
text processing HTML text: raw = nltk.clean_html(html_text) tokens = nltk.word_tokenize(raw)
text = nltk.Text(tokens) Use BeautifulSoup for preprocessing of the HTML text to discard unnecessary data.
Part-of-speech tagging
pos tagging text = "Run away!" nltk.word_tokenize(text) nltk.pos_tag(tokens) [('Run', 'NNP'),
('away', 'RB'), ('!', '.')]
pos tagging [('Run', 'NNP'), ('away', 'RB'), ('!', '.')] NNP: Proper
Noun, Singular RB : Adverb http://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos. html
pos tagging "The sailor dogs the barmaid." [('The', 'DT'), ('sailor',
'NN'), ('dogs', 'NNS'), ('the', 'DT'), ('barmaid', 'NN'), ('.', '.')]
Sentiment Analysis Code: http://bit.ly/GLu2Q9
Differentiate between "happy" and "sad" tweets. Teach the classifier the
"features" of happy & sad tweets and test how good it is.
Happy: "Looking through old pics and realizing everything happens for
a reason. So happy with where I am right now" Sad: "So sad I have 8 AM class tomorrow"
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
happy.txt sad.txt happy_test.txt sad_test.txt } training data } testing data
Tweets obtained from Twitter Search API
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
Happy tweets usually contain the following words: "am happy", "great
day" etc. Sad tweets usually contain the following: "not happy", "am sad" etc. features
{'contains(not)': False, 'contains(view)': False, 'contains(best)': False, 'contains(excited)': False, 'contains(morning)': False,
'contains(about)': False, 'contains(horrible)': True, 'contains(like)': False, ... } output of extract_features()
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
training_set = \ nltk.classify.util.\ apply_features(extract_features, tweets) classifier = \ NaiveBayesClassifier.train
(training_set) training the classifer training classifer
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
def classify_tweet(tweet): return \ classifier.classify(extract_features (tweet)) testing classifer
$ python classification.py Total accuracy: 90.00% (18/20) 18 tweets got
classified correctly.
Where to go from here.
http://www.nltk.org/book
https://class.coursera.org/nlp/auth/welcome
http://www.slideshare.net/shanbady/nltk-boston-text-analytics
[('Thank', 'NNP'), ('you', 'PRP'), ('.', '.')] @victorneo