Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
NLTK Intro for PUGS
Search
Victor Neo
March 27, 2012
Programming
7
550
NLTK Intro for PUGS
Slides for the NLTK talk given on March 2012 for Python User Group SG Meetup.
Victor Neo
March 27, 2012
Tweet
Share
More Decks by Victor Neo
See All by Victor Neo
Django - The Next Steps
victorneo
5
600
DevOps: Python tools to get started
victorneo
9
13k
Git and Python workshop
victorneo
2
780
Other Decks in Programming
See All in Programming
なぜイベント駆動が必要なのか - CQRS/ESで解く複雑系システムの課題 -
j5ik2o
12
4.1k
第3回関東Kaggler会_AtCoderはKaggleの役に立つ
chettub
3
1k
バックエンドのためのアプリ内課金入門 (サブスク編)
qnighy
8
1.8k
ファインディLT_ポケモン対戦の定量的分析
fufufukakaka
0
740
SwiftUIで単方向アーキテクチャを導入して得られた成果
takuyaosawa
0
270
AIの力でお手軽Chrome拡張機能作り
taiseiue
0
170
Flutter × Firebase Genkit で加速する生成 AI アプリ開発
coborinai
0
160
Linux && Docker 研修/Linux && Docker training
forrep
24
4.5k
WebDriver BiDiとは何なのか
yotahada3
1
140
Amazon Q Developer Proで効率化するAPI開発入門
seike460
PRO
0
110
富山発の個人開発サービスで日本中の学校の業務を改善した話
krpk1900
5
390
Immutable ActiveRecord
megane42
0
140
Featured
See All Featured
Building Flexible Design Systems
yeseniaperezcruz
328
38k
Embracing the Ebb and Flow
colly
84
4.6k
How STYLIGHT went responsive
nonsquared
98
5.4k
The Power of CSS Pseudo Elements
geoffreycrofte
75
5.5k
VelocityConf: Rendering Performance Case Studies
addyosmani
328
24k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Designing for Performance
lara
604
68k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.4k
A designer walks into a library…
pauljervisheath
205
24k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
27
1.9k
Being A Developer After 40
akosma
89
590k
Transcript
Natural Language Toolkit @victorneo
Natural Language Processing
"the process of a computer extracting meaningful information from natural
language input and/or producing natural language output"
None
Getting started with NLTK
Open source Python modules, linguistic data and documentation for research
and development in natural language processing and text analytics, with distributions for Windows, Mac OSX and Linux. NLTK
None
installatio n # you might need numpy pip install nltk
# enter Python shell import nltk nltk.download()
None
packages # For Part of Speech tagging maxent_treebank_pos_tagger # Get
a list of stopwords stopwords # Brown corpus to play around brown
Preparing data / corpus
tokens NLTK works on Tokens, for example, "Hello World!" will
be tokenized to: ['Hello', 'World', '!'] The built-in tokenizer for most use cases: nltk.word_tokenize("Hello World!")
text processing HTML text: raw = nltk.clean_html(html_text) tokens = nltk.word_tokenize(raw)
text = nltk.Text(tokens) Use BeautifulSoup for preprocessing of the HTML text to discard unnecessary data.
Part-of-speech tagging
pos tagging text = "Run away!" nltk.word_tokenize(text) nltk.pos_tag(tokens) [('Run', 'NNP'),
('away', 'RB'), ('!', '.')]
pos tagging [('Run', 'NNP'), ('away', 'RB'), ('!', '.')] NNP: Proper
Noun, Singular RB : Adverb http://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos. html
pos tagging "The sailor dogs the barmaid." [('The', 'DT'), ('sailor',
'NN'), ('dogs', 'NNS'), ('the', 'DT'), ('barmaid', 'NN'), ('.', '.')]
Sentiment Analysis Code: http://bit.ly/GLu2Q9
Differentiate between "happy" and "sad" tweets. Teach the classifier the
"features" of happy & sad tweets and test how good it is.
Happy: "Looking through old pics and realizing everything happens for
a reason. So happy with where I am right now" Sad: "So sad I have 8 AM class tomorrow"
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
happy.txt sad.txt happy_test.txt sad_test.txt } training data } testing data
Tweets obtained from Twitter Search API
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
Happy tweets usually contain the following words: "am happy", "great
day" etc. Sad tweets usually contain the following: "not happy", "am sad" etc. features
{'contains(not)': False, 'contains(view)': False, 'contains(best)': False, 'contains(excited)': False, 'contains(morning)': False,
'contains(about)': False, 'contains(horrible)': True, 'contains(like)': False, ... } output of extract_features()
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
training_set = \ nltk.classify.util.\ apply_features(extract_features, tweets) classifier = \ NaiveBayesClassifier.train
(training_set) training the classifer training classifer
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
def classify_tweet(tweet): return \ classifier.classify(extract_features (tweet)) testing classifer
$ python classification.py Total accuracy: 90.00% (18/20) 18 tweets got
classified correctly.
Where to go from here.
http://www.nltk.org/book
https://class.coursera.org/nlp/auth/welcome
http://www.slideshare.net/shanbady/nltk-boston-text-analytics
[('Thank', 'NNP'), ('you', 'PRP'), ('.', '.')] @victorneo