Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
NLTK Intro for PUGS
Search
Victor Neo
March 27, 2012
Programming
7
550
NLTK Intro for PUGS
Slides for the NLTK talk given on March 2012 for Python User Group SG Meetup.
Victor Neo
March 27, 2012
Tweet
Share
More Decks by Victor Neo
See All by Victor Neo
Django - The Next Steps
victorneo
5
590
DevOps: Python tools to get started
victorneo
9
13k
Git and Python workshop
victorneo
2
780
Other Decks in Programming
See All in Programming
OnlineTestConf: Test Automation Friend or Foe
maaretp
0
120
Enabling DevOps and Team Topologies Through Architecture: Architecting for Fast Flow
cer
PRO
0
340
NSOutlineView何もわからん:( 前編 / I Don't Understand About NSOutlineView :( Pt. 1
usagimaru
0
340
ふかぼれ!CSSセレクターモジュール / Fukabore! CSS Selectors Module
petamoriken
0
150
PHP でアセンブリ言語のように書く技術
memory1994
PRO
1
170
watsonx.ai Dojo #4 生成AIを使ったアプリ開発、応用編
oniak3ibm
PRO
1
170
3 Effective Rules for Using Signals in Angular
manfredsteyer
PRO
0
120
リアーキテクチャxDDD 1年間の取り組みと進化
hsawaji
1
220
距離関数を極める! / SESSIONS 2024
gam0022
0
290
色々なIaCツールを実際に触って比較してみる
iriikeita
0
330
Snowflake x dbtで作るセキュアでアジャイルなデータ基盤
tsoshiro
2
520
Streams APIとTCPフロー制御 / Web Streams API and TCP flow control
tasshi
2
360
Featured
See All Featured
Embracing the Ebb and Flow
colly
84
4.5k
The World Runs on Bad Software
bkeepers
PRO
65
11k
How to Think Like a Performance Engineer
csswizardry
20
1.1k
Statistics for Hackers
jakevdp
796
220k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
191
16k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
42
9.2k
Java REST API Framework Comparison - PWX 2021
mraible
PRO
28
8.2k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
665
120k
YesSQL, Process and Tooling at Scale
rocio
169
14k
The Cult of Friendly URLs
andyhume
78
6k
Transcript
Natural Language Toolkit @victorneo
Natural Language Processing
"the process of a computer extracting meaningful information from natural
language input and/or producing natural language output"
None
Getting started with NLTK
Open source Python modules, linguistic data and documentation for research
and development in natural language processing and text analytics, with distributions for Windows, Mac OSX and Linux. NLTK
None
installatio n # you might need numpy pip install nltk
# enter Python shell import nltk nltk.download()
None
packages # For Part of Speech tagging maxent_treebank_pos_tagger # Get
a list of stopwords stopwords # Brown corpus to play around brown
Preparing data / corpus
tokens NLTK works on Tokens, for example, "Hello World!" will
be tokenized to: ['Hello', 'World', '!'] The built-in tokenizer for most use cases: nltk.word_tokenize("Hello World!")
text processing HTML text: raw = nltk.clean_html(html_text) tokens = nltk.word_tokenize(raw)
text = nltk.Text(tokens) Use BeautifulSoup for preprocessing of the HTML text to discard unnecessary data.
Part-of-speech tagging
pos tagging text = "Run away!" nltk.word_tokenize(text) nltk.pos_tag(tokens) [('Run', 'NNP'),
('away', 'RB'), ('!', '.')]
pos tagging [('Run', 'NNP'), ('away', 'RB'), ('!', '.')] NNP: Proper
Noun, Singular RB : Adverb http://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos. html
pos tagging "The sailor dogs the barmaid." [('The', 'DT'), ('sailor',
'NN'), ('dogs', 'NNS'), ('the', 'DT'), ('barmaid', 'NN'), ('.', '.')]
Sentiment Analysis Code: http://bit.ly/GLu2Q9
Differentiate between "happy" and "sad" tweets. Teach the classifier the
"features" of happy & sad tweets and test how good it is.
Happy: "Looking through old pics and realizing everything happens for
a reason. So happy with where I am right now" Sad: "So sad I have 8 AM class tomorrow"
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
happy.txt sad.txt happy_test.txt sad_test.txt } training data } testing data
Tweets obtained from Twitter Search API
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
Happy tweets usually contain the following words: "am happy", "great
day" etc. Sad tweets usually contain the following: "not happy", "am sad" etc. features
{'contains(not)': False, 'contains(view)': False, 'contains(best)': False, 'contains(excited)': False, 'contains(morning)': False,
'contains(about)': False, 'contains(horrible)': True, 'contains(like)': False, ... } output of extract_features()
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
training_set = \ nltk.classify.util.\ apply_features(extract_features, tweets) classifier = \ NaiveBayesClassifier.train
(training_set) training the classifer training classifer
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
def classify_tweet(tweet): return \ classifier.classify(extract_features (tweet)) testing classifer
$ python classification.py Total accuracy: 90.00% (18/20) 18 tweets got
classified correctly.
Where to go from here.
http://www.nltk.org/book
https://class.coursera.org/nlp/auth/welcome
http://www.slideshare.net/shanbady/nltk-boston-text-analytics
[('Thank', 'NNP'), ('you', 'PRP'), ('.', '.')] @victorneo