Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
NLTK Intro for PUGS
Search
Victor Neo
March 27, 2012
Programming
7
570
NLTK Intro for PUGS
Slides for the NLTK talk given on March 2012 for Python User Group SG Meetup.
Victor Neo
March 27, 2012
Tweet
Share
More Decks by Victor Neo
See All by Victor Neo
Django - The Next Steps
victorneo
5
630
DevOps: Python tools to get started
victorneo
9
13k
Git and Python workshop
victorneo
2
790
Other Decks in Programming
See All in Programming
LLMとPlaywright/reg-suitを活用した jQueryリファクタリングの実際
kinocoboy2
4
670
CSC305 Lecture 02
javiergs
PRO
1
260
私達はmodernize packageに夢を見るか feat. go/analysis, go/ast / Go Conference 2025
kaorumuta
2
500
フロントエンド開発に役立つクライアントプログラム共通のノウハウ / Universal client-side programming best practices for frontend development
nrslib
7
3.9k
GitHub Actions × AWS OIDC連携の仕組みと経緯を理解する
ota1022
0
240
非同期jobをtransaction内で 呼ぶなよ!絶対に呼ぶなよ!
alstrocrack
0
560
明日から始めるリファクタリング
ryounasso
0
120
Domain-centric? Why Hexagonal, Onion, and Clean Architecture Are Answers to the Wrong Question
olivergierke
1
550
Go言語の特性を活かした公式MCP SDKの設計
hond0413
1
200
CSC509 Lecture 04
javiergs
PRO
0
300
CSC305 Lecture 01
javiergs
PRO
1
400
Playwrightはどのようにクロスブラウザをサポートしているのか
yotahada3
7
2.3k
Featured
See All Featured
Unsuck your backbone
ammeep
671
58k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.2k
Designing for Performance
lara
610
69k
KATA
mclloyd
32
15k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
4 Signs Your Business is Dying
shpigford
185
22k
Docker and Python
trallard
46
3.6k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
A designer walks into a library…
pauljervisheath
209
24k
Faster Mobile Websites
deanohume
310
31k
Code Review Best Practice
trishagee
72
19k
Transcript
Natural Language Toolkit @victorneo
Natural Language Processing
"the process of a computer extracting meaningful information from natural
language input and/or producing natural language output"
None
Getting started with NLTK
Open source Python modules, linguistic data and documentation for research
and development in natural language processing and text analytics, with distributions for Windows, Mac OSX and Linux. NLTK
None
installatio n # you might need numpy pip install nltk
# enter Python shell import nltk nltk.download()
None
packages # For Part of Speech tagging maxent_treebank_pos_tagger # Get
a list of stopwords stopwords # Brown corpus to play around brown
Preparing data / corpus
tokens NLTK works on Tokens, for example, "Hello World!" will
be tokenized to: ['Hello', 'World', '!'] The built-in tokenizer for most use cases: nltk.word_tokenize("Hello World!")
text processing HTML text: raw = nltk.clean_html(html_text) tokens = nltk.word_tokenize(raw)
text = nltk.Text(tokens) Use BeautifulSoup for preprocessing of the HTML text to discard unnecessary data.
Part-of-speech tagging
pos tagging text = "Run away!" nltk.word_tokenize(text) nltk.pos_tag(tokens) [('Run', 'NNP'),
('away', 'RB'), ('!', '.')]
pos tagging [('Run', 'NNP'), ('away', 'RB'), ('!', '.')] NNP: Proper
Noun, Singular RB : Adverb http://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos. html
pos tagging "The sailor dogs the barmaid." [('The', 'DT'), ('sailor',
'NN'), ('dogs', 'NNS'), ('the', 'DT'), ('barmaid', 'NN'), ('.', '.')]
Sentiment Analysis Code: http://bit.ly/GLu2Q9
Differentiate between "happy" and "sad" tweets. Teach the classifier the
"features" of happy & sad tweets and test how good it is.
Happy: "Looking through old pics and realizing everything happens for
a reason. So happy with where I am right now" Sad: "So sad I have 8 AM class tomorrow"
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
happy.txt sad.txt happy_test.txt sad_test.txt } training data } testing data
Tweets obtained from Twitter Search API
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
Happy tweets usually contain the following words: "am happy", "great
day" etc. Sad tweets usually contain the following: "not happy", "am sad" etc. features
{'contains(not)': False, 'contains(view)': False, 'contains(best)': False, 'contains(excited)': False, 'contains(morning)': False,
'contains(about)': False, 'contains(horrible)': True, 'contains(like)': False, ... } output of extract_features()
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
training_set = \ nltk.classify.util.\ apply_features(extract_features, tweets) classifier = \ NaiveBayesClassifier.train
(training_set) training the classifer training classifer
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
def classify_tweet(tweet): return \ classifier.classify(extract_features (tweet)) testing classifer
$ python classification.py Total accuracy: 90.00% (18/20) 18 tweets got
classified correctly.
Where to go from here.
http://www.nltk.org/book
https://class.coursera.org/nlp/auth/welcome
http://www.slideshare.net/shanbady/nltk-boston-text-analytics
[('Thank', 'NNP'), ('you', 'PRP'), ('.', '.')] @victorneo