Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
NLTK Intro for PUGS
Search
Victor Neo
March 27, 2012
Programming
7
570
NLTK Intro for PUGS
Slides for the NLTK talk given on March 2012 for Python User Group SG Meetup.
Victor Neo
March 27, 2012
Tweet
Share
More Decks by Victor Neo
See All by Victor Neo
Django - The Next Steps
victorneo
5
640
DevOps: Python tools to get started
victorneo
9
13k
Git and Python workshop
victorneo
2
790
Other Decks in Programming
See All in Programming
ネストしたdata classの面倒な更新にさようなら!Lensを作って理解するArrowのOpticsの世界
shiita0903
1
230
釣り地図SNSにおける有料機能の実装
nokonoko1203
0
200
フロントエンド開発のためのブラウザ組み込みAI入門
masashi
7
3.7k
Register is more than clipboard
satorunooshie
1
340
Introducing RemoteCompose: break your UI out of the app sandbox.
camaelon
2
390
Making Angular Apps Smarter with Generative AI: Local and Offline-capable
christianliebel
PRO
0
100
Blazing Fast UI Development with Compose Hot Reload (droidcon London 2025)
zsmb
0
440
AIのバカさ加減に怒る前にやっておくこと
blueeventhorizon
0
140
Migration to Signals, Resource API, and NgRx Signal Store
manfredsteyer
PRO
0
140
SODA - FACT BOOK(JP)
sodainc
1
9.1k
マイベストのシンプルなデータ基盤の話 - Googleスイートとのつき合い方 / mybest-simple-data-architecture-google-nized
snhryt
0
120
NIKKEI Tech Talk#38
cipepser
0
350
Featured
See All Featured
A Tale of Four Properties
chriscoyier
161
23k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Building a Scalable Design System with Sketch
lauravandoore
463
33k
We Have a Design System, Now What?
morganepeng
54
7.9k
Documentation Writing (for coders)
carmenintech
76
5.1k
Into the Great Unknown - MozCon
thekraken
40
2.1k
Typedesign – Prime Four
hannesfritz
42
2.8k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.5k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
10
900
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
RailsConf 2023
tenderlove
30
1.3k
Transcript
Natural Language Toolkit @victorneo
Natural Language Processing
"the process of a computer extracting meaningful information from natural
language input and/or producing natural language output"
None
Getting started with NLTK
Open source Python modules, linguistic data and documentation for research
and development in natural language processing and text analytics, with distributions for Windows, Mac OSX and Linux. NLTK
None
installatio n # you might need numpy pip install nltk
# enter Python shell import nltk nltk.download()
None
packages # For Part of Speech tagging maxent_treebank_pos_tagger # Get
a list of stopwords stopwords # Brown corpus to play around brown
Preparing data / corpus
tokens NLTK works on Tokens, for example, "Hello World!" will
be tokenized to: ['Hello', 'World', '!'] The built-in tokenizer for most use cases: nltk.word_tokenize("Hello World!")
text processing HTML text: raw = nltk.clean_html(html_text) tokens = nltk.word_tokenize(raw)
text = nltk.Text(tokens) Use BeautifulSoup for preprocessing of the HTML text to discard unnecessary data.
Part-of-speech tagging
pos tagging text = "Run away!" nltk.word_tokenize(text) nltk.pos_tag(tokens) [('Run', 'NNP'),
('away', 'RB'), ('!', '.')]
pos tagging [('Run', 'NNP'), ('away', 'RB'), ('!', '.')] NNP: Proper
Noun, Singular RB : Adverb http://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos. html
pos tagging "The sailor dogs the barmaid." [('The', 'DT'), ('sailor',
'NN'), ('dogs', 'NNS'), ('the', 'DT'), ('barmaid', 'NN'), ('.', '.')]
Sentiment Analysis Code: http://bit.ly/GLu2Q9
Differentiate between "happy" and "sad" tweets. Teach the classifier the
"features" of happy & sad tweets and test how good it is.
Happy: "Looking through old pics and realizing everything happens for
a reason. So happy with where I am right now" Sad: "So sad I have 8 AM class tomorrow"
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
happy.txt sad.txt happy_test.txt sad_test.txt } training data } testing data
Tweets obtained from Twitter Search API
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
Happy tweets usually contain the following words: "am happy", "great
day" etc. Sad tweets usually contain the following: "not happy", "am sad" etc. features
{'contains(not)': False, 'contains(view)': False, 'contains(best)': False, 'contains(excited)': False, 'contains(morning)': False,
'contains(about)': False, 'contains(horrible)': True, 'contains(like)': False, ... } output of extract_features()
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
training_set = \ nltk.classify.util.\ apply_features(extract_features, tweets) classifier = \ NaiveBayesClassifier.train
(training_set) training the classifer training classifer
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
def classify_tweet(tweet): return \ classifier.classify(extract_features (tweet)) testing classifer
$ python classification.py Total accuracy: 90.00% (18/20) 18 tweets got
classified correctly.
Where to go from here.
http://www.nltk.org/book
https://class.coursera.org/nlp/auth/welcome
http://www.slideshare.net/shanbady/nltk-boston-text-analytics
[('Thank', 'NNP'), ('you', 'PRP'), ('.', '.')] @victorneo