Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Join Algorithm in Spark
Search
yabooun
June 28, 2022
Technology
0
95
Join Algorithm in Spark
Sparkを扱う上で最も重要な概念のひとつであるJoinについて、どういったアルゴリズムが使われているのかを解説します。
yabooun
June 28, 2022
Tweet
Share
More Decks by yabooun
See All by yabooun
データ分析基盤の要件分析の話(202201_JEDAI)
yabooun
1
1k
Other Decks in Technology
See All in Technology
Why Platform Engineering? - マルチプロダクト・少人数 SRE の壁を越える挑戦 -
nulabinc
PRO
0
110
Notion x ポストモーテムで広げる組織の学び / Notion x Postmortem
isaoshimizu
1
150
時間がないなら、つくればいい 〜数十人規模のチームが自律性を発揮するために試しているいくつかのこと〜
kakehashi
PRO
22
4.6k
ビジネスとデザインとエンジニアリングを繋ぐために 一人のエンジニアは何ができるか / What can a single engineer do to connect business, design, and engineering?
kaminashi
2
880
地味にいろいろあった! 2025春のAmazon Bedrockアップデートおさらい
minorun365
PRO
2
570
勝手に!深堀り!Cloud Run worker pools / Deep dive Cloud Run worker pools
iselegant
4
650
Computer Use〜OpenAIとAnthropicの比較と将来の展望〜
pharma_x_tech
6
990
Azure Maps Visual in PowerBIで分析しよう
nakasho
0
200
企業が押さえるべきMCPの未来
takaakikakei
4
910
Oracle Cloud Infrastructure:2025年4月度サービス・アップデート
oracle4engineer
PRO
0
390
問 1:以下のコンパイラを証明せよ(予告編) #kernelvm / Kernel VM Study Kansai 11th
ytaka23
3
370
Aspire をカスタマイズしよう & Aspire 9.2
nenonaninu
0
380
Featured
See All Featured
Code Review Best Practice
trishagee
67
18k
Designing for humans not robots
tammielis
253
25k
Mobile First: as difficult as doing things right
swwweet
223
9.6k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
YesSQL, Process and Tooling at Scale
rocio
172
14k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
700
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
14
1.4k
A designer walks into a library…
pauljervisheath
205
24k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.3k
Producing Creativity
orderedlist
PRO
344
40k
The Straight Up "How To Draw Better" Workshop
denniskardys
233
140k
Transcript
Join Algorithm in Spark 2022/06/28 @yabooun
自己紹介 藪本 晃輔 @yabooun 株式会社ジオロジック CTO 趣味: 登山、ピアノ、日本酒 晴れてると、空ばかり眺めてしまうので、今週末山に行ってきます。
Joinとは • 複数のテーブルを一定のルールに基づいて結合する処理 • SQLの基本的な構文のひとつ • LEFT JOIN, RIGHT JOIN,
INNER JOIN, CROSS JOIN, LEFT LATERAL JOIN, ・・・ • サブクエリも全部JOINで書ける • ただし、同じJOINでも、データ量やクエリによって違うアルゴリズムが使われる ◦ 使われるアルゴリズムは基本的に処理系が決める ◦ アルゴリズムによって全然速さが違う • RDBMSやHadoop/Spark等のビッグデータ系のシステムでは別のアルゴリズム ◦ ビッグデータ系はRDBMSより多くのアルゴリズムがある • 意外と奥が深いJOIN
RDBMSにおけるJOIN 1. Hash Join 2. Sort Merge Join 3. Nested
Loop Join
Hash Join 大きいテーブルと小さいテーブルを結合するときに使う。結合条件がシンプルなA=Bのときに利用可能。 1. 小さいテーブルの結合キーでハッシュを作成 2. 大きいテーブルをスキャン 3. 1行ごとに小さいテーブルをハッシュ検索 •
大きい方のテーブルをScanするだけなので最速 • 一番優先されるアルゴリズム • 片方が小さくないとHashがメモリに乗らない • インデックスがあるとさらに高速
Sort Merge Join 大きいテーブル同士を結合するときに使う。結合条件がシンプルなA=Bのときに利用可能。 1. 両方テーブルをそれぞれ結合キーでソート 2. それぞれのテーブルを上から順番に読みながら、結合 結果を出力する (ソート順が若い方のテーブルのカーソルを進めながら処理し
ていくイメージ) • 大きいテーブル同士では有効 • 結合キーにインデックスがないとソートに時間がかかる • 複雑な結合条件に対応できない
Nested Loop Join Hash JoinとSort Merge Joinで対応できないときに使用 1. 片方のテーブルをScan 2.
Scanしながら1行ごとにもう一方のテーブルを全部 Scan 3. 結合条件にマッチしていたら結合 • N * N のコストがかかる • どんな条件でもできる • 基本的には使わせたくない
RDBMSにおけるJOIN • 基本的にはHash Joinが使われるようにしよう • せめてSort Merge Joinが使われるようにしよう • Joinのキーはインデックス登録しておこう
• 文字列結合したり変な条件で Joinすると遅い
SparkにおけるJOIN • Sparkでもほとんど似た考え方の Joinが使われる • 複数のノードからなるクラスタで実行されるため、同じアルゴリズムでも複数パターン • アルゴリズムひとつ変わると、クエリの速度が 1,000倍くらい余裕で変わる
SparkにおけるJOIN 1. Broadcast Hash Join 2. Shuffle Hash Join 3.
Shuffle Sort Merge Join 4. Broadcast Nested Loop Join 5. Cartesian Join
Broadcast Hash Join 大きいテーブルと小さいテーブルを結合するときに使う。結合条件がシンプルなA=Bのときに利用可能。 1. 小さいテーブルの結合キーでハッシュを作成 2. ハッシュをすべてのノードにコピー 3. 各ノードでHash
Join 4. 結果を結合 • 一番早い。とにかくこれを使え。 • Sparkの仕様上小さいテーブルが8MBまで。 (Sparkのデフォルトはたしか1MBくらいになっているこ とが多い)
Shuffle Hash Join 大きいテーブルとそこそこ大きいテーブルを結合するときに使う。結合条件がシンプルなA=Bのときに利用可能。 1. それぞれをテーブルを結合条件でshuffle 2. 各ノードでHash作成 3. 各ノードでHash
Join 4. 結果を結合 • Broadcast Hash Joinの次に早い • おそらくShuffleでIOが発生するケースがあるからか、 想像より遅い
Shuffle Sort Merge Join 大きいテーブル同士を結合するときに使う。結合条件がシンプルなA=Bのときに利用可能。 1. それぞれをテーブルを結合条件でshuffle 2. 各ノードでSort Merge
Join 3. 結果を結合 • あまり早くない • Shuffleが発生する上に、各ノードでソート • Shuffle、ソートはどちらも大きなデータでは時間のかか る処理
Broadcast Nested Loop Join 結合条件が複雑なときに使用。両方が大きすぎると手の打ちようがない。 1. 小さいの方のテーブルを全ノードにコピー 2. 大きい方のテーブルを各ノードに分散 3.
各ノードでNested Loop Join 4. 結果を結合 • 使ってはいけないくらい重い • 使ったらエラーを出すオプションもある
JOINの敵、Skew Skewとはデータの偏り。偏りが大きいと全体の結果がなかなか返ってこない。 Shuffle系のJoinで問題になる。 このケースだと、Worker1の処理が終わるまで全体のJoinが完了しない。
Skewの最適化 Spark 3.0でSkew Hintを与えることにより(条件によってはHintがなくても)Skewを検知してデータを再分散し、偏りによる問題 を最小化する機能が追加された。 Skewの発生しているWorker1を再分散して別のWorkerで処理をする。
結論 • できるだけBroadcast Joinを使おう ◦ マスタとの結合は明示的に Bradcast Hash Joinを使わせたりする •
どうしても出来ないときでも、複雑な条件では Joinしないようにしよう • Shuffle Joinが発生するカラムは均等に分散される設計にしよう ◦ IDFAやランダムな文字列などは基本的に偏りがない ◦ ステータスやtype系のものでJoinしようとするとSkewが発生しやすい • あとは実際どのJoinが使われているか、実行プランを確認しよう