Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
.mdc駆動ナレッジマネジメント/.mdc-driven knowledge management
Search
Yoda Keisuke
April 10, 2025
Technology
32
21k
.mdc駆動ナレッジマネジメント/.mdc-driven knowledge management
.mdc駆動ナレッジマネジメント→ 知識APIとしてのmcp serverまで
Loglass TECH TALK vol.5〜50名のエンジニア全員で挑むCursor活用の全貌〜 LT資料
Yoda Keisuke
April 10, 2025
Tweet
Share
More Decks by Yoda Keisuke
See All by Yoda Keisuke
Expertise as a Service via MCP
yodakeisuke
1
360
Code as Context 〜 1にコードで 2にリンタ 34がなくて 5にルール? 〜
yodakeisuke
0
330
Agent Rules as Domain Parser
yodakeisuke
1
1.2k
Reactのミニマム理解 〜UI = f(data)(state)+sideEffect〜
yodakeisuke
5
150
インフラ高級言語としてのAWS CDK〜"設定"より1段階ハイレベルな抽象化〜
yodakeisuke
1
97
Other Decks in Technology
See All in Technology
自作JSエンジンに推しプロポーザルを実装したい!
sajikix
1
150
Oracle Cloud Infrastructure:2025年8月度サービス・アップデート
oracle4engineer
PRO
0
200
バッチ処理で悩むバックエンドエンジニアに捧げるAWS Glue入門
diggymo
3
120
「魔法少女まどか☆マギカ Magia Exedra」のグローバル展開を支える、開発チームと翻訳チームの「意識しない協創」を実現するローカライズシステム
gree_tech
PRO
0
540
Snowflakeの生成AI機能を活用したデータ分析アプリの作成 〜Cortex AnalystとCortex Searchの活用とStreamlitアプリでの利用〜
nayuts
0
290
Skrub: machine-learning with dataframes
gaelvaroquaux
0
120
250905 大吉祥寺.pm 2025 前夜祭 「プログラミングに出会って20年、『今』が1番楽しい」
msykd
PRO
1
450
Autonomous Database - Dedicated 技術詳細 / adb-d_technical_detail_jp
oracle4engineer
PRO
4
9.9k
Obsidian応用活用術
onikun94
1
390
ヘブンバーンズレッドのレンダリングパイプライン刷新
gree_tech
PRO
0
550
まだ間に合う! StrandsとBedrock AgentCoreでAIエージェント構築に入門しよう
minorun365
PRO
11
920
スプリントレトロスペクティブはチーム観察の宝庫? 〜チームの衝突レベルに合わせたアプローチ仮説!〜
electricsatie
1
160
Featured
See All Featured
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
840
Building Adaptive Systems
keathley
43
2.7k
Mobile First: as difficult as doing things right
swwweet
224
9.9k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
GraphQLとの向き合い方2022年版
quramy
49
14k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Facilitating Awesome Meetings
lara
55
6.5k
Documentation Writing (for coders)
carmenintech
74
5k
Navigating Team Friction
lara
189
15k
Agile that works and the tools we love
rasmusluckow
330
21k
A Tale of Four Properties
chriscoyier
160
23k
Transcript
0 .mdc駆動ナレッジマネジメント → 知識APIとしてのmcp serverまで Loglass TECH TALK vol.5〜50名のエンジニア全員で挑むCursor活用の全貌〜 依田
啓佑 2025.4.10
1 サマリー Cursor rulesとは… ※ 本資料の図解の6割は claude先生に作成いただいております 従来的なナレッジマネジメント方法論の 最近の技術による実装 「組織」として
育てる https://amzn.asia/d/1o0hMOW (最近は別の新装版も出てます)
2 サマリー 開発関連知識管理の変遷
3 Agenda
4 Agenda 1.サマリー 2.why: なぜ知識を書くのか? 3.what: 何を書くのか? 4.how: どのように知識サイクルを回すのか? 5.when:
いつ、開発プロセスの中で利用されるか? 6.who, where: 誰が、どこで知識創造するのか? 7.今後の展望
5 なぜ知識を書くのか? ― 開発文脈のナレッジ蓄積の課題と .mdcによる進化可能性 ・見られない ・更新されない、メンテナンスコスト 半ば勝手に適用される -> 改善点が出る
-> 改善PRが出る コードと近い箇所にgit管理 指摘をまとめた学びをruleに出力させる 知識の陳腐化 その文脈で必要な知識が自動でコンテキストに含められる (完全ではないが) クエリをLLMが解釈してくれる 丁寧に言語化した分、良い結果が返る その場の知ってるか知らないかの知識の、言語化の強制 文脈に応じた解釈、使用 コンテキストに追加した後、適用すべきか自己判断 ・いつ何を見ればいいかわからない ・多すぎると検索の仕方がわからない 検索性の悪さ ・場合によって正解が違う知識 文脈依存性の解決難 ・コンテキスト整備がagent活用に直結 ・相対的に、ハイコンテキスト文化が不 利になっているのではないか ドキュメンテーションの復権
6 なぜ知識を書くのか?― Loglassのナレトラにおける課題 Loglassにおいても… ➢ FASTフレームワーク化の動的チーミングにお いて、チームへの人の出入りが激しい ➢ 新入社員の増加 既存メンバーの新規事業へ
の異動 ➢ 仕様の暗黙化による品質低下 ➢ コンテキスト整備した競合への開発速度劣後 口伝に頼らないナレトラが急がれる
7 Agenda 1.サマリー 2.why: なぜ知識を書くのか? 3.what: 何を書くのか? 4.how: どのように知識サイクルを回すのか? 5.when:
いつ、開発プロセスの中で利用されるか? 6.who, where: 誰が、どこで知識創造するのか? 7.今後の展望
8 何を書くのか? ― スコープ ※ 実際の社内ADRより抜粋 ➢ 規約・そのコードベース特有の知識・使用法 .mdc ➢
プロダクトコンテキスト等 .md ➢ より詳細な仕様 .feature(Gherkin記法による仕様記述)
9 何を書くのか? ― どこまで書くのか? 一般的知識 プロダクト特有 コード的知識 ドメイン的知識 書かない 書かない
書く 書く AIくん知っとるやろ系 それは教えられなきゃ知らないよね系 規約系(そのチーム内の合意) まあコードを読めばわかる系 型情報や関数名で表明されている知識 処理を追えばわかること コメントでの目的の補足 〜の原則などのベスプラの詳細 浅い部分のドメイン知識 有名ライブラリの使い方 固有のユビキタス言語の意味 社内デザインシステムの使い方 プロダクトやサブドメインの知識を凝 縮したサマリ コーディング・テスト規約 PR本文のテンプレ 関数型スタイルに寄せろ、のような指針
10 何を書くのか? ― 実際の.cursor/配下ディレクトリ 個人の好みが介在するruleは ➢ `local`のプレフィックス ➢ それをgitignore
11 何を書くのか? ― 実例: excel操作に関する知識 rule type: 適用の温度感 ✓ 基本manually
✓ 規約レベルのものはAuto Attached/ Agent Requested 本文 ✓ yaml形式などにはしていない ✓ 日本語(人間へのオンボも兼ねるので) (以下も追加してもよさそう) バージョン ✓ 評価・改善のためにあると便利そう タグ ✓ 何に関連する知識かのフック
12 Agenda 1.サマリー 2.why: なぜ知識を書くのか? 3.what: 何を書くのか? 4.how: どのように知識サイクルを回すのか? 5.when:
いつ、開発プロセスの中で利用されるか? 6.who, where: 誰が、どこで知識創造するのか? 7.今後の展望
13 どのように知識サイクルを回すのか? ― SECIモデルの実装と捉えた場合の.mdc 内面化/共同化 ・形式知->暗黙知 ・暗黙知の個人の内面化 表出化 ・暗黙知->形式知 ・図解化や言語化
連結化 ・知識 ×知識 ・体系化や掛け合わせ 評価 ・知識の評価・効果測定 ・SECIには含まれず? ① rule候補の発掘 ・AIの出したコードから学ぶ ・rule作りのモブ作業 ・ruleを見てベスプラを学習 ruleを媒体に知識が伝播 ② ruleを形式化 ・PRを出すことで暗黙知を言語化 ・git上で共有される ・cursorが適用すべきruleを拾う 自動適用される実用的な形で形式化 ④ ruleの評価・先鋭化 ・有効性の測定(ここが難しい..) ・機能しないものは捨てる コンテキストを汚しすぎない ③ ruleの体系化・創発 ・他の人のruleの改善 ・rule対する意見の競合->議論->止揚 ・知識の構造をまとめ直す ruleが組織の集合知として育つ SECIモデル
14 どのように知識サイクルを回すのか? ― loglassのruleのライフサイクルの中で実際に行なっている/試したいこと 俺たちの Cursor道は… まだ始まったばかり!
15 Agenda 1.サマリー 2.why: なぜ知識を書くのか? 3.what: 何を書くのか? 4.how: どのように知識サイクルを回すのか? 5.when:
いつ、開発プロセスの中で利用されるか? 6.who, where: 誰が、どこで知識創造するのか? 7.今後の展望
16 いつ.開発プロセスの中で使うか? ― 開発プロセスの中での使い所
17 Agenda 1.サマリー 2.why: なぜ知識を書くのか? 3.what: 何を書くのか? 4.how: どのように知識サイクルを回すのか? 5.when:
いつ、開発プロセスの中で利用されるか? 6.who, where: 誰が、どこで知識創造するのか? 7.今後の展望
18 誰が、どこで? ― SECIモデル「ミドルアップダウン」「場(Ba)」の概念
19 誰が、どこで? ― Loglassでは? https://comemo.nikkei.com/n/n26dc284dcd5a
20 Agenda 1.サマリー 2.why: なぜ知識を書くのか? 3.what: 何を書くのか? 4.how: どのように知識サイクルを回すのか? 5.when:
いつ、開発プロセスの中で利用されるか? 6.who, where: 誰が、どこで知識創造するのか? 7.今後の展望
21 .mdcのその先に― .mdcが育ち、知識APIと化す .mdcが育ったその先に…
22 .mdcのその先に ― docのmcp化を最近見かけるようになっている
23 自己紹介 株式会社ログラス エンジニア 依田 啓佑 Keisuke Yoda x: kei_output_1104
後で資料upします!
24
25