Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
【輪読資料】多次元正規分布でGibbs Sampling (情報工学機械学習9.3.4)
Search
Yuiga Wada (和田唯我)
November 29, 2022
Technology
0
61
【輪読資料】多次元正規分布でGibbs Sampling (情報工学機械学習9.3.4)
https://yuiga.dev/blog/posts/gibbs_mulnorm/
Yuiga Wada (和田唯我)
November 29, 2022
Tweet
Share
More Decks by Yuiga Wada (和田唯我)
See All by Yuiga Wada (和田唯我)
機械学習基礎 TAレクチャー回「学部二年生はどう生きるべきか」
yuigawada
1
96
【AIC】Image Captioningにおける自動評価の最前線
yuigawada
0
25
未踏ブースト会議資料
yuigawada
0
160
論文速読24
yuigawada
0
80
【授業スライド】Well-beingとカルトの関係
yuigawada
0
310
論文速読23
yuigawada
0
160
自己紹介スライド
yuigawada
0
870
【ミニハッカソン】 arXiv Slider
yuigawada
0
340
【授業スライド】Sugar Visualizer
yuigawada
0
450
Other Decks in Technology
See All in Technology
ExpoのインダストリーブースでみたAWSが見せる製造業の未来
hamadakoji
0
170
まだ間に合う! Agentic AI on AWSの現在地をやさしく一挙おさらい
minorun365
15
1.6k
AWSを使う上で最低限知っておきたいセキュリティ研修を社内で実施した話 ~みんなでやるセキュリティ~
maimyyym
2
1.9k
年間40件以上の登壇を続けて見えた「本当の発信力」/ 20251213 Masaki Okuda
shift_evolve
PRO
1
140
エンジニアリングをやめたくないので問い続ける
estie
2
1.2k
文字列の並び順 / Unicode Collation
tmtms
3
620
シニアソフトウェアエンジニアになるためには
kworkdev
PRO
3
200
30分であなたをOmniのファンにしてみせます~分析画面のクリック操作をそのままコード化できるAI-ReadyなBIツール~
sagara
0
180
Lessons from Migrating to OpenSearch: Shard Design, Log Ingestion, and UI Decisions
sansantech
PRO
1
160
日本Rubyの会: これまでとこれから
snoozer05
PRO
4
200
Kiro を用いたペアプロのススメ
taikis
3
930
ActiveJobUpdates
igaiga
1
240
Featured
See All Featured
Lightning talk: Run Django tests with GitHub Actions
sabderemane
0
87
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
0
940
Practical Orchestrator
shlominoach
190
11k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Agile Actions for Facilitating Distributed Teams - ADO2019
mkilby
0
86
Digital Projects Gone Horribly Wrong (And the UX Pros Who Still Save the Day) - Dean Schuster
uxyall
0
99
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
More Than Pixels: Becoming A User Experience Designer
marktimemedia
2
250
Money Talks: Using Revenue to Get Sh*t Done
nikkihalliwell
0
120
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
22
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
Context Engineering - Making Every Token Count
addyosmani
9
540
Transcript
情報⼯学機械学習 §9.3.4 B3 和⽥唯我 2022/3/1
⽬次 2 • 9.3.4 条件付き確率 • a. 多次元正規分布における Gibbs Sampling
• b. ブロック⾏列の逆⾏列の導出 • c. Demo: Gibbs Samplingの実装
⽬次 3 • 9.3.4 条件付き確率 • a. 多次元正規分布における Gibbs Sampling
• b. ブロック⾏列の逆⾏列の導出 • c. Demo: Gibbs Samplingの実装
a. 特徴と⽬標の整理 4 • Gibbs Sampling の特徴 • ⼀次元だけサンプルを更新するので, 条件付き確率の計算が必要
→ ⼀般に条件付き確率の計算は困難 • ⽬標 • 多次元正規分布における条件付き確率を計算し, Gibbs Samplingに具体的なア ルゴリズムの⼀例を与える.
a. 設定の整理 5 • ベクトル 𝒛 • ⼀次元だけサンプルを更新 • →
第⼀番⽬の変数 𝑥 とベクトル 𝒚 で構成されているとする • 平均・共分散⾏列・精度⾏列 • 以下のようにブロック⾏列で記述
a. 過程の整理 6 • アルゴリズム導出の流れ 1. 提案分布を正規分布 𝒩 µ, Σ
とし, ⼀次元のみに着⽬ (→ 𝑥 ). 2. 𝑝 𝒛 𝝁, Σ (=: 𝑝 𝒚, 𝑥 )から 𝑝 𝑥 | 𝒚 を計算し, パラメタ µ!|# , σ!|# $ を計算. 3. 𝑝 𝑥 | 𝒚 と 𝑝 𝑧% | 𝑧& '(& 𝑧$ '(& , … , 𝑧%)& '(& , 𝑧%(& ' , … , 𝑧* (') との対応を与える.
a. 式の整理 7 • 𝒛 ~ 𝒩 µ, Σ のとき
𝑝 𝒛 𝝁, Σ は以下の通り • 共分散⾏列 Σを精度⾏列 Λ で書き換えると
a. パラメタ µ!|# , σ!|# $ の計算 8 • パラメタ
の計算 • σ!|# $ → 𝑥 に関する2次の項と対応 • µ!|# → 𝑥 に関する1次の項と対応 • ⇒ 𝑝(𝒚) は 𝑥 に関与しないので 𝑝 𝒛 𝝁, Σ を 𝑥 について係数⽐較 疑問: 𝑥 と 𝒚 って相関ゼロ?
a. パラメタ µ!|# , σ!|# $ の計算 9 • 𝑝
𝒛 𝝁, Σ の 𝑒𝑥𝑝 内を 𝑥 について展開すると
a. パラメタ σ!|# $ の計算 10 • 2次の項について 𝑝 𝒛
𝝁, Σ 𝑝(𝑥|𝒚)
a. パラメタ µ!|# の計算 11 • 1次の項について 𝑝 𝒛 𝝁,
Σ 𝑝(𝑥|𝒚)
a. パラメタ µ!|# , σ!|# $ の計算 12 • 求めた各パラメタは,
精度⾏列に依存している • → 精度⾏列を共分散⾏列で書き下す必要がある • ブロック⾏列の逆⾏列が問題となる • → ブロック⾏列の逆⾏列を求めよう
⽬次 13 • 9.3.4 条件付き確率 • a. 多次元正規分布における Gibbs Sampling
• b. ブロック⾏列の逆⾏列の導出 • c. Demo: Gibbs Samplingの実装
b. ブロック⾏列の逆⾏列 – LDU分解 14 • ブロック⾏列Pをブロック⾏列 X, Y, Z,
Wを⽤いてLDU分解する • 逆⾏列といえばLU分解じゃない? • なんでここではLDU? • ブロック⾏列なのでUの対⾓⽅向のブロックを I にしたほうが楽 (個⼈的な感想) L (下三⾓) D (対⾓) U (上三⾓)
b. ブロック⾏列の逆⾏列 – LDU分解 15 • Pの各ブロックと⽐較すれば, 以下のようにLDU分解が構成できる
b. ブロック⾏列の逆⾏列 – LDU分解 16 • 逆⾏列を求めるには, ブロック⾏列L,D,Uの逆⾏列が求まれば良い.
b. ブロック⾏列の逆⾏列 – LDU分解 17 • ブロック⾏列L,D,Uの逆⾏列 • 同じ形のブロック⾏列で, 4つのブロックを適当な⽂字に置けば求まる
b. ブロック⾏列の逆⾏列 – LDU分解 18 • ブロック⾏列L,D,Uの逆⾏列が求まったので, 所望の逆⾏列は • 各ブロックについて
• Woodburyの公式が簡略化に有効
b. ブロック⾏列の逆⾏列 – Woodburyの公式 19 • Woodburyの公式 ブロック⾏列の逆⾏列 𝐷 ←
−𝐷−1, 𝑇 ≔ 𝐴 − 𝐵𝐷−1𝐶 と置けば式が綺麗に
b. ブロック⾏列の逆⾏列 20 • よって, ブロック⾏列の逆⾏列は以下の式で与えられる ただし, 𝑇 = 𝐴
− 𝐵𝐷−1𝐶
b. ブロック⾏列の逆⾏列 – 結果 21 • 本題に戻ると… • 以上の議論より, 平均・分散に⽤いる精度⾏列のブロックは
⽬次 22 • 9.3.4 条件付き確率 • a. 多次元正規分布における Gibbs Sampling
• b. ブロック⾏列の逆⾏列の導出 • c. Demo: Gibbs Samplingの実装
c. Demo: Gibbs Samplingの実装 23
c. Demo: Gibbs Samplingの実装 24 コードはgistに上げたので遊んでみてね ⇒ https://gist.github.com/YuigaWada/4929fc479027af6f05ef4950a093ba33