Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
本当に簡単なkaggleの始め方 / Easy Way to Start Kaggle - s...
Search
yukinagae
February 19, 2019
Technology
2
520
本当に簡単なkaggleの始め方 / Easy Way to Start Kaggle - short ver.
yukinagae
February 19, 2019
Tweet
Share
More Decks by yukinagae
See All by yukinagae
Devin, 正しい付き合い方と使い方 / Living and Working with Devin
yukinagae
3
1k
BerglasとCloud Buildを使って秘密情報をセキュアに(できるかも) / Berglas with Cloud Build
yukinagae
1
1.2k
ある機械学習システムをAWSからGCP/GKEに移行した話 / Machine Learning System Migration from AWS to GKE
yukinagae
8
4k
Python用のマイクロサービスフレームワークを探す旅 / A journey to find a microservices framework for Python
yukinagae
0
1.2k
AWSからGCP/GKEに移行してみた / From AWS to GKE on GCP
yukinagae
6
8.8k
Spotifyのレコメンドを理解する / Recommender Systems using Collaborative Filtering - Spotify
yukinagae
1
660
kintone事例紹介 JAMS.TV ケーススタディ / kintone-casestudy-jamstv
yukinagae
0
230
BigQuery MLの新機能紹介 Cloud Next '19 / BigQuery ML New Features Announced at Google Cloud Next 2019
yukinagae
2
16k
学習行動データ分析基盤 Learning Record Store(LRS)開発事例 / LRS case study
yukinagae
5
1.9k
Other Decks in Technology
See All in Technology
AIコードエディタは開発を変えるか?Cursorをチームに導入して1ヶ月経った本音
ota1022
1
690
コードの考古学 〜労務システムから発掘した成長の糧〜
kenta_smarthr
1
1.1k
Scale Security Programs with Scorecarding
ramimac
0
430
技術書典18結果報告
mutsumix
2
180
ゴリラ.vim #36 ~ Vim x SNS ~ スポンサーセッション
yasunori0418
1
340
Node−RED で Ollama を使ったローカルLLM(node-red-contrib-ollamaを利用) / ビジュアルプログラミングIoTLT vol.20
you
PRO
0
140
AIエージェントデザインパターンの選び方
almondo_event
0
140
DevOpsDays Taipei 2025 -- Creating Awesome Change in SmartNews!
martin_lover
0
160
TypeScript と歩む OpenAPI の discriminator / OpenAPI discriminator with TypeScript
kaminashi
1
150
Rebase エンジニアリング組織の現状とこれから
rebase_engineering
0
140
【5分でわかる】セーフィー エンジニア向け会社紹介
safie_recruit
0
24k
mnt_data_とは?ChatGPTコード実行環境を深堀りしてみた
icck
0
210
Featured
See All Featured
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
19
1.2k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Side Projects
sachag
454
42k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
Product Roadmaps are Hard
iamctodd
PRO
53
11k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
5.8k
Gamification - CAS2011
davidbonilla
81
5.3k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Transcript
本当に簡単なkaggle の始め方 @yukinagae
自己紹介 永江悠紀 @yukinagae グロービス 2018/8 ~ データサイエンティスト(Python/Go) 経歴 元Java/Scala エンジニア
オーストラリアでデータ分析を勉強 → 今に至る 最近はベイズ統計モデリングに興味ある(˘ω˘) スヤァ
Agenda 1. kaggle とは? 2. kaggle の仕組み 3. やってみた( `・ω
・´) 3
1. kaggle とは? 4
世界最大の機械学習・データ分析の コンペを主催するプラットフォーム 5
つまり 6
データサイエンティストの 世界最強を決める大会 7
kaggle の規模 ユーザ数: 50 万以上 国: 190 カ国以上 らしい( `・ω
・´) 8
2. kaggle の仕組み 9
大まかな流れ 1. 主催者(企業など)がコンペを主催する a. データを準備 b. 問題を定義する 2. 参加者は様々な手法を使ってベストなモデルを構 築し、予測を提出する
スコアやランキングが分かる 3. 主催者は、精度が高い予測に賞金を払う 10
ということで 11
3. 早速kaggle をやってみた ( `・ω ・´) 12
1. コンペを選ぶ 13
例えばこのコンペ( `・ω ・´) 14
2. コンペの内容を読む 1. 概要: 大まかに把握 2. 評価指標: これが一番大事( `・ω ・´)
3. 賞金: できればほしいよね 4. 期限: 時間厳守 5. データ: だいたいCSV ファイル(BigQuery も) 15
3. 他の参加者から学ぶ 1. コード(kernel ) 2. ディスカッション(discussion ) 16
いろんな人がコードを載せてくれてるので助かる see: Simple Exploration+Baseline - GA Customer Revenue | Kaggle
17
4. 他の参加者の方法を真似てみる コードをパクってローカルPC で実行するだけの簡単 なお仕事( `・ω ・´) 18
5. 助け合う <= New! ちょうどライブラリのバージョンで上手く動作しなか ったので、上手くいった方法を教え合う( `・ω ・´) 19
6. めんどくさいので人のコードを fork する 20
fork したコードを実行するだけ( `・ω ・´) 21
実行中 22
7. 予測を提出する 23
8. スコアとランクを確認 689 位(全1,031 チーム) ちーん( `・ω ・´) 24
結局言いたいのは 25
パクった後が勝負 26
まとめ kaggle はデータサイエンティストのNo.1 を決める 大会 とりあえず人のコードをパクって頑張る kaggle は沼( `・ω ・´)
27
参考資料 Kaggle - Wikipedia What is Kaggle, Why I Participate,
What is the Impact? fast.ai · Making neural nets uncool again deeplearning.ai: Announcing new Deep Learning courses on Coursera 28
おわり( `・ω ・´) ようこそkaggle 沼へ 29
最後にいちおう We're hiring! 30