Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
本当に簡単なkaggleの始め方 / Easy Way to Start Kaggle - s...
Search
yukinagae
February 19, 2019
Technology
2
530
本当に簡単なkaggleの始め方 / Easy Way to Start Kaggle - short ver.
yukinagae
February 19, 2019
Tweet
Share
More Decks by yukinagae
See All by yukinagae
Devin, 正しい付き合い方と使い方 / Living and Working with Devin
yukinagae
3
1.1k
BerglasとCloud Buildを使って秘密情報をセキュアに(できるかも) / Berglas with Cloud Build
yukinagae
1
1.2k
ある機械学習システムをAWSからGCP/GKEに移行した話 / Machine Learning System Migration from AWS to GKE
yukinagae
8
4k
Python用のマイクロサービスフレームワークを探す旅 / A journey to find a microservices framework for Python
yukinagae
0
1.2k
AWSからGCP/GKEに移行してみた / From AWS to GKE on GCP
yukinagae
6
18k
Spotifyのレコメンドを理解する / Recommender Systems using Collaborative Filtering - Spotify
yukinagae
1
700
kintone事例紹介 JAMS.TV ケーススタディ / kintone-casestudy-jamstv
yukinagae
0
240
BigQuery MLの新機能紹介 Cloud Next '19 / BigQuery ML New Features Announced at Google Cloud Next 2019
yukinagae
2
16k
学習行動データ分析基盤 Learning Record Store(LRS)開発事例 / LRS case study
yukinagae
5
1.9k
Other Decks in Technology
See All in Technology
生成AI導入の効果を最大化する データ活用戦略
ham0215
0
110
20250728 MCP, A2A and Multi-Agents in the future
yoshidashingo
1
210
AIエージェントを現場で使う / 2025.08.07 著者陣に聞く!現場で活用するためのAIエージェント実践入門(Findyランチセッション)
smiyawaki0820
6
570
20250807_Kiroと私の反省会
riz3f7
0
130
ビジネス文書に特化した基盤モデル開発 / SaaSxML_Session_2
sansan_randd
0
260
マルチプロダクト×マルチテナントを支えるモジュラモノリスを中心としたアソビューのアーキテクチャ
disc99
0
280
OPENLOGI Company Profile for engineer
hr01
1
37k
【Λ(らむだ)】最近のアプデ情報 / RPALT20250729
lambda
0
230
データ基盤の管理者からGoogle Cloud全体の管理者になっていた話
zozotech
PRO
0
330
LIFF CLIとngrokを使ったLIFF/LINEミニアプリのお手軽実機確認
diggymo
0
230
dipにおけるSRE変革の軌跡
dip_tech
PRO
1
230
AWS re:Inforce 2025 re:Cap Update Pickup & AWS Control Tower の運用における考慮ポイント
htan
1
200
Featured
See All Featured
YesSQL, Process and Tooling at Scale
rocio
173
14k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Designing for Performance
lara
610
69k
How GitHub (no longer) Works
holman
314
140k
Mobile First: as difficult as doing things right
swwweet
223
9.9k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Adopting Sorbet at Scale
ufuk
77
9.5k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.9k
The Cost Of JavaScript in 2023
addyosmani
51
8.7k
The World Runs on Bad Software
bkeepers
PRO
70
11k
Transcript
本当に簡単なkaggle の始め方 @yukinagae
自己紹介 永江悠紀 @yukinagae グロービス 2018/8 ~ データサイエンティスト(Python/Go) 経歴 元Java/Scala エンジニア
オーストラリアでデータ分析を勉強 → 今に至る 最近はベイズ統計モデリングに興味ある(˘ω˘) スヤァ
Agenda 1. kaggle とは? 2. kaggle の仕組み 3. やってみた( `・ω
・´) 3
1. kaggle とは? 4
世界最大の機械学習・データ分析の コンペを主催するプラットフォーム 5
つまり 6
データサイエンティストの 世界最強を決める大会 7
kaggle の規模 ユーザ数: 50 万以上 国: 190 カ国以上 らしい( `・ω
・´) 8
2. kaggle の仕組み 9
大まかな流れ 1. 主催者(企業など)がコンペを主催する a. データを準備 b. 問題を定義する 2. 参加者は様々な手法を使ってベストなモデルを構 築し、予測を提出する
スコアやランキングが分かる 3. 主催者は、精度が高い予測に賞金を払う 10
ということで 11
3. 早速kaggle をやってみた ( `・ω ・´) 12
1. コンペを選ぶ 13
例えばこのコンペ( `・ω ・´) 14
2. コンペの内容を読む 1. 概要: 大まかに把握 2. 評価指標: これが一番大事( `・ω ・´)
3. 賞金: できればほしいよね 4. 期限: 時間厳守 5. データ: だいたいCSV ファイル(BigQuery も) 15
3. 他の参加者から学ぶ 1. コード(kernel ) 2. ディスカッション(discussion ) 16
いろんな人がコードを載せてくれてるので助かる see: Simple Exploration+Baseline - GA Customer Revenue | Kaggle
17
4. 他の参加者の方法を真似てみる コードをパクってローカルPC で実行するだけの簡単 なお仕事( `・ω ・´) 18
5. 助け合う <= New! ちょうどライブラリのバージョンで上手く動作しなか ったので、上手くいった方法を教え合う( `・ω ・´) 19
6. めんどくさいので人のコードを fork する 20
fork したコードを実行するだけ( `・ω ・´) 21
実行中 22
7. 予測を提出する 23
8. スコアとランクを確認 689 位(全1,031 チーム) ちーん( `・ω ・´) 24
結局言いたいのは 25
パクった後が勝負 26
まとめ kaggle はデータサイエンティストのNo.1 を決める 大会 とりあえず人のコードをパクって頑張る kaggle は沼( `・ω ・´)
27
参考資料 Kaggle - Wikipedia What is Kaggle, Why I Participate,
What is the Impact? fast.ai · Making neural nets uncool again deeplearning.ai: Announcing new Deep Learning courses on Coursera 28
おわり( `・ω ・´) ようこそkaggle 沼へ 29
最後にいちおう We're hiring! 30