Upgrade to Pro — share decks privately, control downloads, hide ads and more …

dbtをAirflowで動かす道のりは続く...

Avatar for Yuu.Kimy Yuu.Kimy
November 28, 2023

 dbtをAirflowで動かす道のりは続く...

タイミーさんとの合同勉強会で発表させて頂いた資料です。
dbt CoreをAirflow(Cloud Composer)で動かした時の検証結果をまとめています。

Avatar for Yuu.Kimy

Yuu.Kimy

November 28, 2023
Tweet

More Decks by Yuu.Kimy

Other Decks in Technology

Transcript

  1. 背景 • これまでAirflow(Cloud Composer)にて、定常的なバッチ更新で運用してきた。 ◦ 基本は、BigQueryに対するデータ更新処理 • ただ、日常の開発は、やり辛さが発生しており、開発体験が悪い.. ◦ ➜

    dbtによる開発に切り替えたい • ただし、定常運用は、既に、オペレーションとしては確立しており、 大きくは変更したくない。 ➜ 学習コストがかかり、キャッチアップに時間がかかるため。 • 上記を踏まえ、dbtをAirflowで動かてみたい!
  2. 検討 • 以下の方式が考えられる • 折角、導入するのであれば、dbtで出来る体験をAirflowに持ち込みたい ➜ 上記により、#3で決定 ➜ 個人的に使ってみたかったというのも大いにありw #

    dbt 実行概要 気になるポイント 1 dbt Core BashOperator利用 BashOperatorに閉じてしまう.. 2 dbt Cloud DbtCloudRunJobOperator利用 dbt Cloudをまだ導入していない ..& 同上 3 dbt Core Cosmosパッケージ利用 dbtのモデルもDAGの依存関係として表示可
  3. ハマったこと • ドキュメント通りに実装しても、エラーが発生した... ◦ ドキュメント&コードはそれなりに読む必要がある ▪ 例: stringで渡すと書いてあったのに、 Pathオブジェクトで渡す必要があり.. (後述)

    • dbt -> BigQueryの認証は、profiles.yml を渡して、ProfileConfigを生成すると、 json keyを利用しなくてもOK ◦ profiles.ymlには、BigQueryの実行権限を持つプロジェクトを指定 ◦ 事前に作成していないデータセットに、モデル結果を保存させると、 データセットまで作成するので、データセット生成の権限がないとエラー..
  4. 考察 • 既に、dbtのモデルの運用していたとしても、Cosmosを使った事前検証は必要 • AirflowのDAGの中で、dbtのモデルを表現できるのは強みと思しき ◦ dbtを利用する際は、基本的に、dbtのモデルを意識すれば良い • dbtのプロジェクトをDAGごとに分離できるのも強み ◦

    完全に分離するのであれば、Docker/k8sを検討するのが良いと思しき ◦ ↑ただし、モデルの実行時間(全体)が長くなりそう.. • 小〜中規模なデータ分析基盤であれば、dbt + Cosmos + Airflowで十分かも ◦ 今年(2023年)にリリースされ、結構ホットなOSSであるが、 本番利用は慎重に検討したほうが良さそうな予感,,