Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Good Schema Design and Why It Matters
Search
Andrew Godwin
May 15, 2014
Programming
12
1.2k
Good Schema Design and Why It Matters
A talk I gave at DjangoCon Europe 2014.
Andrew Godwin
May 15, 2014
Tweet
Share
More Decks by Andrew Godwin
See All by Andrew Godwin
Reconciling Everything
andrewgodwin
1
340
Django Through The Years
andrewgodwin
0
250
Writing Maintainable Software At Scale
andrewgodwin
0
470
A Newcomer's Guide To Airflow's Architecture
andrewgodwin
0
370
Async, Python, and the Future
andrewgodwin
2
690
How To Break Django: With Async
andrewgodwin
1
750
Taking Django's ORM Async
andrewgodwin
0
750
The Long Road To Asynchrony
andrewgodwin
0
690
The Scientist & The Engineer
andrewgodwin
1
790
Other Decks in Programming
See All in Programming
Vueで学ぶデータ構造入門 リンクリストとキューでリアクティビティを捉える / Vue Data Structures: Linked Lists and Queues for Reactivity
konkarin
1
320
「10分以内に機能を消せる状態」 の実現のためにやっていること
togishima
1
530
Module Harmony
petamoriken
2
500
AIと協働し、イベントソーシングとアクターモデルで作る後悔しないアーキテクチャ Regret-Free Architecture with AI, Event Sourcing, and Actors
tomohisa
2
6.4k
高単価案件で働くための心構え
nullnull
0
150
AIエージェントでのJava開発がはかどるMCPをAIを使って開発してみた / java mcp for jjug
kishida
4
750
全員アーキテクトで挑む、 巨大で高密度なドメインの紐解き方
agatan
5
6.7k
Phronetic Team with AI - Agile Japan 2025 closing
hiranabe
2
660
30分でDoctrineの仕組みと使い方を完全にマスターする / phpconkagawa 2025 Doctrine
ttskch
1
140
TVerのWeb内製化 - 開発スピードと品質を両立させるまでの道のり
techtver
PRO
3
1.2k
AIを駆使して新しい技術を効率的に理解する方法
nogu66
1
650
2025 컴포즈 마법사
jisungbin
0
140
Featured
See All Featured
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.2k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.6k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Practical Orchestrator
shlominoach
190
11k
Context Engineering - Making Every Token Count
addyosmani
9
410
YesSQL, Process and Tooling at Scale
rocio
174
15k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
680
Code Review Best Practice
trishagee
72
19k
Raft: Consensus for Rubyists
vanstee
140
7.2k
Transcript
Andrew Godwin @andrewgodwin GOOD SCHEMA DESIGN WHY IT MATTERS and
Andrew Godwin Core Developer Senior Engineer Author & Maintainer
Schemas Explicit & Implicit
Explicit PostgreSQL MySQL Oracle SQLite CouchDB MongoDB Redis ZODB Implicit
Explicit Schema ID int Name text Weight uint 1 2
3 Alice Bob Charles 76 84 65 Implicit Schema { "id": 342, "name": "David", "weight": 44, }
Explicit Schema Normalised or semi normalised structure JOINs to retrieve
related data Implicit Schema Embedded structure Related data retrieved naturally with object
Silent Failure { "id": 342, "name": "David", "weight": 74, }
{ "id": 342, "name": "Ellie", "weight": "85kg", } { "id": 342, "nom": "Frankie", "weight": 77, } { "id": 342, "name": "Frankie", "weight": -67, }
Schemas inform Storage
PostgreSQL
Adding NULLable columns: instant But must be at end of
table
CREATE INDEX CONCURRENTLY Slower, and only one at a time
Constraints after column addition This is more general advice
MySQL Locks whole table Rewrites entire storage No DDL transactions
Oracle / MSSQL / etc. Look into their strengths
Changing the Schema Databases aren't code...
You can't put your database in a VCS You can
put your schema in a VCS But your data won't always survive.
Django Migrations Codified schema change format
None
Migrations aren't enough You can't automate away a social problem!
What if we got rid of the schema? That pesky,
pesky schema.
The Nesting Problem { "id": 123, "name": "Andrew", "friends": [
{"id": 456, "name": "David"}, {"id": 789, "name": "Mazz"}, ], "likes": [ {"id": 22, "liker": {"id": 789, "name", "Mazz"}}, ], }
You don't have to use a document DB (like CouchDB,
MongoDB, etc.)
Schemaless Columns ID int Name text Weight uint Data json
1 Alice 76 { "nickname": "Al", "bgcolor": "#ff0033" }
But that must be slower... Right?
Comparison (never trust benchmarks) Loading 1.2 million records PostgreSQL MongoDB
76 sec 8 min Sequential scan PostgreSQL MongoDB 980 ms 980 ms Index scan (Postgres GINhash) PostgreSQL MongoDB 0.7 ms 1 ms
Load Shapes
Read-heavy Write-heavy Large size
Read-heavy Write-heavy Large size Wikipedia TV show page Minecraft Forums
Amazon Glacier Eventbrite Logging
Read-heavy Write-heavy Large size Offline storage Append formats In-memory cache
Many indexes Fewer indexes
Your load changes over time Scaling is not just a
flat multiplier
General Advice Write heavy → Fewer indexes Read heavy →
Denormalise Keep large data away from read/write heavy data Blob stores/filesystems are DBs too
Lessons They're near the end so you remember them.
Re-evaulate as you grow Different things matter at different sizes
Adding NULL columns is great Always prefer this if nothing
else
You'll need more than one DBMS But don't use too
many, you'll be swamped
Indexes aren't free You pay the price at write/restore time
Relational DBs are flexible They can do a lot more
than JOINing normalised tables
Thanks! Andrew Godwin @andrewgodwin eventbrite.com/jobs are hiring: