Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Good Schema Design and Why It Matters
Search
Andrew Godwin
May 15, 2014
Programming
12
1.2k
Good Schema Design and Why It Matters
A talk I gave at DjangoCon Europe 2014.
Andrew Godwin
May 15, 2014
Tweet
Share
More Decks by Andrew Godwin
See All by Andrew Godwin
Reconciling Everything
andrewgodwin
1
350
Django Through The Years
andrewgodwin
0
260
Writing Maintainable Software At Scale
andrewgodwin
0
470
A Newcomer's Guide To Airflow's Architecture
andrewgodwin
0
380
Async, Python, and the Future
andrewgodwin
2
700
How To Break Django: With Async
andrewgodwin
1
760
Taking Django's ORM Async
andrewgodwin
0
750
The Long Road To Asynchrony
andrewgodwin
0
710
The Scientist & The Engineer
andrewgodwin
1
800
Other Decks in Programming
See All in Programming
안드로이드 9년차 개발자, 프론트엔드 주니어로 커리어 리셋하기
maryang
1
120
S3 VectorsとStrands Agentsを利用したAgentic RAGシステムの構築
tosuri13
6
310
エディターってAIで操作できるんだぜ
kis9a
0
730
AIの誤りが許されない業務システムにおいて“信頼されるAI” を目指す / building-trusted-ai-systems
yuya4
6
3.6k
WebRTC、 綺麗に見るか滑らかに見るか
sublimer
1
190
ID管理機能開発の裏側 高速にSaaS連携を実現したチームのAI活用編
atzzcokek
0
230
関数実行の裏側では何が起きているのか?
minop1205
1
700
宅宅自以為的浪漫:跟 AI 一起為自己辦的研討會寫一個售票系統
eddie
0
510
Claude Codeの「Compacting Conversation」を体感50%減! CLAUDE.md + 8 Skills で挑むコンテキスト管理術
kmurahama
0
250
SwiftUIで本格音ゲー実装してみた
hypebeans
0
390
「コードは上から下へ読むのが一番」と思った時に、思い出してほしい話
panda728
PRO
38
26k
AI時代を生き抜く 新卒エンジニアの生きる道
coconala_engineer
1
230
Featured
See All Featured
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
Typedesign – Prime Four
hannesfritz
42
2.9k
Building an army of robots
kneath
306
46k
Building Adaptive Systems
keathley
44
2.9k
Producing Creativity
orderedlist
PRO
348
40k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
710
Making Projects Easy
brettharned
120
6.5k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
Transcript
Andrew Godwin @andrewgodwin GOOD SCHEMA DESIGN WHY IT MATTERS and
Andrew Godwin Core Developer Senior Engineer Author & Maintainer
Schemas Explicit & Implicit
Explicit PostgreSQL MySQL Oracle SQLite CouchDB MongoDB Redis ZODB Implicit
Explicit Schema ID int Name text Weight uint 1 2
3 Alice Bob Charles 76 84 65 Implicit Schema { "id": 342, "name": "David", "weight": 44, }
Explicit Schema Normalised or semi normalised structure JOINs to retrieve
related data Implicit Schema Embedded structure Related data retrieved naturally with object
Silent Failure { "id": 342, "name": "David", "weight": 74, }
{ "id": 342, "name": "Ellie", "weight": "85kg", } { "id": 342, "nom": "Frankie", "weight": 77, } { "id": 342, "name": "Frankie", "weight": -67, }
Schemas inform Storage
PostgreSQL
Adding NULLable columns: instant But must be at end of
table
CREATE INDEX CONCURRENTLY Slower, and only one at a time
Constraints after column addition This is more general advice
MySQL Locks whole table Rewrites entire storage No DDL transactions
Oracle / MSSQL / etc. Look into their strengths
Changing the Schema Databases aren't code...
You can't put your database in a VCS You can
put your schema in a VCS But your data won't always survive.
Django Migrations Codified schema change format
None
Migrations aren't enough You can't automate away a social problem!
What if we got rid of the schema? That pesky,
pesky schema.
The Nesting Problem { "id": 123, "name": "Andrew", "friends": [
{"id": 456, "name": "David"}, {"id": 789, "name": "Mazz"}, ], "likes": [ {"id": 22, "liker": {"id": 789, "name", "Mazz"}}, ], }
You don't have to use a document DB (like CouchDB,
MongoDB, etc.)
Schemaless Columns ID int Name text Weight uint Data json
1 Alice 76 { "nickname": "Al", "bgcolor": "#ff0033" }
But that must be slower... Right?
Comparison (never trust benchmarks) Loading 1.2 million records PostgreSQL MongoDB
76 sec 8 min Sequential scan PostgreSQL MongoDB 980 ms 980 ms Index scan (Postgres GINhash) PostgreSQL MongoDB 0.7 ms 1 ms
Load Shapes
Read-heavy Write-heavy Large size
Read-heavy Write-heavy Large size Wikipedia TV show page Minecraft Forums
Amazon Glacier Eventbrite Logging
Read-heavy Write-heavy Large size Offline storage Append formats In-memory cache
Many indexes Fewer indexes
Your load changes over time Scaling is not just a
flat multiplier
General Advice Write heavy → Fewer indexes Read heavy →
Denormalise Keep large data away from read/write heavy data Blob stores/filesystems are DBs too
Lessons They're near the end so you remember them.
Re-evaulate as you grow Different things matter at different sizes
Adding NULL columns is great Always prefer this if nothing
else
You'll need more than one DBMS But don't use too
many, you'll be swamped
Indexes aren't free You pay the price at write/restore time
Relational DBs are flexible They can do a lot more
than JOINing normalised tables
Thanks! Andrew Godwin @andrewgodwin eventbrite.com/jobs are hiring: