Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Good Schema Design and Why It Matters
Search
Andrew Godwin
May 15, 2014
Programming
12
1.2k
Good Schema Design and Why It Matters
A talk I gave at DjangoCon Europe 2014.
Andrew Godwin
May 15, 2014
Tweet
Share
More Decks by Andrew Godwin
See All by Andrew Godwin
Reconciling Everything
andrewgodwin
1
320
Django Through The Years
andrewgodwin
0
210
Writing Maintainable Software At Scale
andrewgodwin
0
450
A Newcomer's Guide To Airflow's Architecture
andrewgodwin
0
360
Async, Python, and the Future
andrewgodwin
2
670
How To Break Django: With Async
andrewgodwin
1
730
Taking Django's ORM Async
andrewgodwin
0
730
The Long Road To Asynchrony
andrewgodwin
0
660
The Scientist & The Engineer
andrewgodwin
1
770
Other Decks in Programming
See All in Programming
オホーツクでコミュニティを立ち上げた理由―地方出身プログラマの挑戦 / TechRAMEN 2025 Conference
lemonade_37
2
480
Terraform やるなら公式スタイルガイドを読もう 〜重要項目 10選〜
hiyanger
13
3.2k
GitHub Copilotの全体像と活用のヒント AI駆動開発の最初の一歩
74th
8
3k
サイトを作ったらNFCタグキーホルダーを爆速で作れ!
yuukis
0
400
フロントエンドのmonorepo化と責務分離のリアーキテクト
kajitack
2
130
Google I/O recap web編 大分Web祭り2025
kponda
0
2.9k
物語を動かす行動"量" #エンジニアニメ
konifar
14
5.3k
ライブ配信サービスの インフラのジレンマ -マルチクラウドに至ったワケ-
mirrativ
1
250
React 使いじゃなくても知っておきたい教養としての React
oukayuka
18
5.8k
#QiitaBash TDDで(自分の)開発がどう変わったか
ryosukedtomita
1
370
あのころの iPod を どうにか再生させたい
orumin
2
2.5k
Introduction to Git & GitHub
latte72
0
120
Featured
See All Featured
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1.1k
Visualization
eitanlees
146
16k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
131
19k
Facilitating Awesome Meetings
lara
55
6.5k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3k
Being A Developer After 40
akosma
90
590k
Site-Speed That Sticks
csswizardry
10
780
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
820
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
Making the Leap to Tech Lead
cromwellryan
134
9.5k
Transcript
Andrew Godwin @andrewgodwin GOOD SCHEMA DESIGN WHY IT MATTERS and
Andrew Godwin Core Developer Senior Engineer Author & Maintainer
Schemas Explicit & Implicit
Explicit PostgreSQL MySQL Oracle SQLite CouchDB MongoDB Redis ZODB Implicit
Explicit Schema ID int Name text Weight uint 1 2
3 Alice Bob Charles 76 84 65 Implicit Schema { "id": 342, "name": "David", "weight": 44, }
Explicit Schema Normalised or semi normalised structure JOINs to retrieve
related data Implicit Schema Embedded structure Related data retrieved naturally with object
Silent Failure { "id": 342, "name": "David", "weight": 74, }
{ "id": 342, "name": "Ellie", "weight": "85kg", } { "id": 342, "nom": "Frankie", "weight": 77, } { "id": 342, "name": "Frankie", "weight": -67, }
Schemas inform Storage
PostgreSQL
Adding NULLable columns: instant But must be at end of
table
CREATE INDEX CONCURRENTLY Slower, and only one at a time
Constraints after column addition This is more general advice
MySQL Locks whole table Rewrites entire storage No DDL transactions
Oracle / MSSQL / etc. Look into their strengths
Changing the Schema Databases aren't code...
You can't put your database in a VCS You can
put your schema in a VCS But your data won't always survive.
Django Migrations Codified schema change format
None
Migrations aren't enough You can't automate away a social problem!
What if we got rid of the schema? That pesky,
pesky schema.
The Nesting Problem { "id": 123, "name": "Andrew", "friends": [
{"id": 456, "name": "David"}, {"id": 789, "name": "Mazz"}, ], "likes": [ {"id": 22, "liker": {"id": 789, "name", "Mazz"}}, ], }
You don't have to use a document DB (like CouchDB,
MongoDB, etc.)
Schemaless Columns ID int Name text Weight uint Data json
1 Alice 76 { "nickname": "Al", "bgcolor": "#ff0033" }
But that must be slower... Right?
Comparison (never trust benchmarks) Loading 1.2 million records PostgreSQL MongoDB
76 sec 8 min Sequential scan PostgreSQL MongoDB 980 ms 980 ms Index scan (Postgres GINhash) PostgreSQL MongoDB 0.7 ms 1 ms
Load Shapes
Read-heavy Write-heavy Large size
Read-heavy Write-heavy Large size Wikipedia TV show page Minecraft Forums
Amazon Glacier Eventbrite Logging
Read-heavy Write-heavy Large size Offline storage Append formats In-memory cache
Many indexes Fewer indexes
Your load changes over time Scaling is not just a
flat multiplier
General Advice Write heavy → Fewer indexes Read heavy →
Denormalise Keep large data away from read/write heavy data Blob stores/filesystems are DBs too
Lessons They're near the end so you remember them.
Re-evaulate as you grow Different things matter at different sizes
Adding NULL columns is great Always prefer this if nothing
else
You'll need more than one DBMS But don't use too
many, you'll be swamped
Indexes aren't free You pay the price at write/restore time
Relational DBs are flexible They can do a lot more
than JOINing normalised tables
Thanks! Andrew Godwin @andrewgodwin eventbrite.com/jobs are hiring: