Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Good Schema Design and Why It Matters
Search
Andrew Godwin
May 15, 2014
Programming
12
1.2k
Good Schema Design and Why It Matters
A talk I gave at DjangoCon Europe 2014.
Andrew Godwin
May 15, 2014
Tweet
Share
More Decks by Andrew Godwin
See All by Andrew Godwin
Reconciling Everything
andrewgodwin
1
360
Django Through The Years
andrewgodwin
0
280
Writing Maintainable Software At Scale
andrewgodwin
0
490
A Newcomer's Guide To Airflow's Architecture
andrewgodwin
0
390
Async, Python, and the Future
andrewgodwin
2
710
How To Break Django: With Async
andrewgodwin
1
770
Taking Django's ORM Async
andrewgodwin
0
760
The Long Road To Asynchrony
andrewgodwin
0
740
The Scientist & The Engineer
andrewgodwin
1
810
Other Decks in Programming
See All in Programming
0→1 フロントエンド開発 Tips🚀 #レバテックMeetup
bengo4com
0
530
AgentCoreとHuman in the Loop
har1101
5
210
AI時代のキャリアプラン「技術の引力」からの脱出と「問い」へのいざない / tech-gravity
minodriven
7
1k
QAフローを最適化し、品質水準を満たしながらリリースまでの期間を最短化する #RSGT2026
shibayu36
2
4.2k
Unicodeどうしてる? PHPから見たUnicode対応と他言語での対応についてのお伺い
youkidearitai
PRO
1
1k
CSC307 Lecture 07
javiergs
PRO
0
530
疑似コードによるプロンプト記述、どのくらい正確に実行される?
kokuyouwind
0
370
【卒業研究】会話ログ分析によるユーザーごとの関心に応じた話題提案手法
momok47
0
180
Honoを使ったリモートMCPサーバでAIツールとの連携を加速させる!
tosuri13
1
170
Architectural Extensions
denyspoltorak
0
260
Grafana:建立系統全知視角的捷徑
blueswen
0
320
インターン生でもAuth0で認証基盤刷新が出来るのか
taku271
0
190
Featured
See All Featured
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Building the Perfect Custom Keyboard
takai
2
680
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.8k
brightonSEO & MeasureFest 2025 - Christian Goodrich - Winning strategies for Black Friday CRO & PPC
cargoodrich
3
91
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Leveraging Curiosity to Care for An Aging Population
cassininazir
1
150
ラッコキーワード サービス紹介資料
rakko
1
2.2M
The Curious Case for Waylosing
cassininazir
0
230
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
60
Designing for Timeless Needs
cassininazir
0
120
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
36k
Transcript
Andrew Godwin @andrewgodwin GOOD SCHEMA DESIGN WHY IT MATTERS and
Andrew Godwin Core Developer Senior Engineer Author & Maintainer
Schemas Explicit & Implicit
Explicit PostgreSQL MySQL Oracle SQLite CouchDB MongoDB Redis ZODB Implicit
Explicit Schema ID int Name text Weight uint 1 2
3 Alice Bob Charles 76 84 65 Implicit Schema { "id": 342, "name": "David", "weight": 44, }
Explicit Schema Normalised or semi normalised structure JOINs to retrieve
related data Implicit Schema Embedded structure Related data retrieved naturally with object
Silent Failure { "id": 342, "name": "David", "weight": 74, }
{ "id": 342, "name": "Ellie", "weight": "85kg", } { "id": 342, "nom": "Frankie", "weight": 77, } { "id": 342, "name": "Frankie", "weight": -67, }
Schemas inform Storage
PostgreSQL
Adding NULLable columns: instant But must be at end of
table
CREATE INDEX CONCURRENTLY Slower, and only one at a time
Constraints after column addition This is more general advice
MySQL Locks whole table Rewrites entire storage No DDL transactions
Oracle / MSSQL / etc. Look into their strengths
Changing the Schema Databases aren't code...
You can't put your database in a VCS You can
put your schema in a VCS But your data won't always survive.
Django Migrations Codified schema change format
None
Migrations aren't enough You can't automate away a social problem!
What if we got rid of the schema? That pesky,
pesky schema.
The Nesting Problem { "id": 123, "name": "Andrew", "friends": [
{"id": 456, "name": "David"}, {"id": 789, "name": "Mazz"}, ], "likes": [ {"id": 22, "liker": {"id": 789, "name", "Mazz"}}, ], }
You don't have to use a document DB (like CouchDB,
MongoDB, etc.)
Schemaless Columns ID int Name text Weight uint Data json
1 Alice 76 { "nickname": "Al", "bgcolor": "#ff0033" }
But that must be slower... Right?
Comparison (never trust benchmarks) Loading 1.2 million records PostgreSQL MongoDB
76 sec 8 min Sequential scan PostgreSQL MongoDB 980 ms 980 ms Index scan (Postgres GINhash) PostgreSQL MongoDB 0.7 ms 1 ms
Load Shapes
Read-heavy Write-heavy Large size
Read-heavy Write-heavy Large size Wikipedia TV show page Minecraft Forums
Amazon Glacier Eventbrite Logging
Read-heavy Write-heavy Large size Offline storage Append formats In-memory cache
Many indexes Fewer indexes
Your load changes over time Scaling is not just a
flat multiplier
General Advice Write heavy → Fewer indexes Read heavy →
Denormalise Keep large data away from read/write heavy data Blob stores/filesystems are DBs too
Lessons They're near the end so you remember them.
Re-evaulate as you grow Different things matter at different sizes
Adding NULL columns is great Always prefer this if nothing
else
You'll need more than one DBMS But don't use too
many, you'll be swamped
Indexes aren't free You pay the price at write/restore time
Relational DBs are flexible They can do a lot more
than JOINing normalised tables
Thanks! Andrew Godwin @andrewgodwin eventbrite.com/jobs are hiring: