Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Good Schema Design and Why It Matters
Search
Andrew Godwin
May 15, 2014
Programming
12
1.2k
Good Schema Design and Why It Matters
A talk I gave at DjangoCon Europe 2014.
Andrew Godwin
May 15, 2014
Tweet
Share
More Decks by Andrew Godwin
See All by Andrew Godwin
Reconciling Everything
andrewgodwin
1
290
Django Through The Years
andrewgodwin
0
190
Writing Maintainable Software At Scale
andrewgodwin
0
420
A Newcomer's Guide To Airflow's Architecture
andrewgodwin
0
340
Async, Python, and the Future
andrewgodwin
2
640
How To Break Django: With Async
andrewgodwin
1
700
Taking Django's ORM Async
andrewgodwin
0
700
The Long Road To Asynchrony
andrewgodwin
0
630
The Scientist & The Engineer
andrewgodwin
1
740
Other Decks in Programming
See All in Programming
「”誤った使い方をすることが困難”な設計」で良いコードの基礎を固めよう / phpcon-odawara-2025
taniguhey
0
120
リアルタイムレイトレーシング + ニューラルレンダリング簡単紹介 / Real-Time Ray Tracing & Neural Rendering: A Quick Introduction (2025)
shocker_0x15
1
290
Strategic Design (DDD)for the Frontend @DDD Meetup Stuttgart
manfredsteyer
PRO
0
110
これだけは知っておきたいクラス設計の基礎知識 version 2
masuda220
PRO
24
6.2k
Kamal 2 – Get Out of the Cloud
aleksandrov
1
180
メモリウォールを超えて:キャッシュメモリ技術の進歩
kawayu
0
1.9k
スモールスタートで始めるためのLambda×モノリス(Lambdalith)
akihisaikeda
2
190
Preact、HooksとSignalsの両立 / Preact: Harmonizing Hooks and Signals
ssssota
1
1.4k
DomainException と Result 型で作る型安全なエラーハンドリング
karszawa
0
890
Harnessing the power of AI in IntelliJ IDEA
antonarhipov
1
100
いまさら聞けない生成AI入門: 「生成AIを高速キャッチアップ」
soh9834
15
4.5k
AHC045_解説
shun_pi
0
490
Featured
See All Featured
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
Designing for Performance
lara
607
69k
Practical Orchestrator
shlominoach
186
10k
GraphQLとの向き合い方2022年版
quramy
46
14k
Making the Leap to Tech Lead
cromwellryan
133
9.2k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
45
9.5k
Designing for humans not robots
tammielis
252
25k
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
227
22k
Into the Great Unknown - MozCon
thekraken
37
1.7k
Visualization
eitanlees
146
16k
Raft: Consensus for Rubyists
vanstee
137
6.9k
Transcript
Andrew Godwin @andrewgodwin GOOD SCHEMA DESIGN WHY IT MATTERS and
Andrew Godwin Core Developer Senior Engineer Author & Maintainer
Schemas Explicit & Implicit
Explicit PostgreSQL MySQL Oracle SQLite CouchDB MongoDB Redis ZODB Implicit
Explicit Schema ID int Name text Weight uint 1 2
3 Alice Bob Charles 76 84 65 Implicit Schema { "id": 342, "name": "David", "weight": 44, }
Explicit Schema Normalised or semi normalised structure JOINs to retrieve
related data Implicit Schema Embedded structure Related data retrieved naturally with object
Silent Failure { "id": 342, "name": "David", "weight": 74, }
{ "id": 342, "name": "Ellie", "weight": "85kg", } { "id": 342, "nom": "Frankie", "weight": 77, } { "id": 342, "name": "Frankie", "weight": -67, }
Schemas inform Storage
PostgreSQL
Adding NULLable columns: instant But must be at end of
table
CREATE INDEX CONCURRENTLY Slower, and only one at a time
Constraints after column addition This is more general advice
MySQL Locks whole table Rewrites entire storage No DDL transactions
Oracle / MSSQL / etc. Look into their strengths
Changing the Schema Databases aren't code...
You can't put your database in a VCS You can
put your schema in a VCS But your data won't always survive.
Django Migrations Codified schema change format
None
Migrations aren't enough You can't automate away a social problem!
What if we got rid of the schema? That pesky,
pesky schema.
The Nesting Problem { "id": 123, "name": "Andrew", "friends": [
{"id": 456, "name": "David"}, {"id": 789, "name": "Mazz"}, ], "likes": [ {"id": 22, "liker": {"id": 789, "name", "Mazz"}}, ], }
You don't have to use a document DB (like CouchDB,
MongoDB, etc.)
Schemaless Columns ID int Name text Weight uint Data json
1 Alice 76 { "nickname": "Al", "bgcolor": "#ff0033" }
But that must be slower... Right?
Comparison (never trust benchmarks) Loading 1.2 million records PostgreSQL MongoDB
76 sec 8 min Sequential scan PostgreSQL MongoDB 980 ms 980 ms Index scan (Postgres GINhash) PostgreSQL MongoDB 0.7 ms 1 ms
Load Shapes
Read-heavy Write-heavy Large size
Read-heavy Write-heavy Large size Wikipedia TV show page Minecraft Forums
Amazon Glacier Eventbrite Logging
Read-heavy Write-heavy Large size Offline storage Append formats In-memory cache
Many indexes Fewer indexes
Your load changes over time Scaling is not just a
flat multiplier
General Advice Write heavy → Fewer indexes Read heavy →
Denormalise Keep large data away from read/write heavy data Blob stores/filesystems are DBs too
Lessons They're near the end so you remember them.
Re-evaulate as you grow Different things matter at different sizes
Adding NULL columns is great Always prefer this if nothing
else
You'll need more than one DBMS But don't use too
many, you'll be swamped
Indexes aren't free You pay the price at write/restore time
Relational DBs are flexible They can do a lot more
than JOINing normalised tables
Thanks! Andrew Godwin @andrewgodwin eventbrite.com/jobs are hiring: