Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Scaling Django with Distributed Systems
Search
Andrew Godwin
April 07, 2017
Programming
3
2.2k
Scaling Django with Distributed Systems
A talk I gave at PyCon Ukraine 2017.
Andrew Godwin
April 07, 2017
Tweet
Share
More Decks by Andrew Godwin
See All by Andrew Godwin
Reconciling Everything
andrewgodwin
1
300
Django Through The Years
andrewgodwin
0
190
Writing Maintainable Software At Scale
andrewgodwin
0
430
A Newcomer's Guide To Airflow's Architecture
andrewgodwin
0
340
Async, Python, and the Future
andrewgodwin
2
650
How To Break Django: With Async
andrewgodwin
1
720
Taking Django's ORM Async
andrewgodwin
0
710
The Long Road To Asynchrony
andrewgodwin
0
640
The Scientist & The Engineer
andrewgodwin
1
740
Other Decks in Programming
See All in Programming
20250426 GDGoC 合同新歓 - GDGoC のススメ
getty708
0
120
Browser and UI #2 HTML/ARIA
ken7253
2
190
生成AI時代のフルスタック開発
kenn
8
1k
OpenTelemetry + LLM = OpenLLMetry!?
yunosukey
2
200
AWS Summit Hong Kong 2025: Reinventing Programming - How AI Transforms Our Enterprise Coding Approach
dwchiang
0
150
鯛変だったRubyKaigi 2025 ── それでも楽しかった!
pndcat
0
110
CQRS/ESのクラスとシステムフロー ~ RailsでフルスクラッチでCQRSESを組んで みたことから得た学び~
suzukimar
0
160
SpringBootにおけるオブザーバビリティのなにか
irof
1
670
Rethinking Data Access: The New httpResource in Angular
manfredsteyer
PRO
0
110
Носок на сок
bo0om
0
1.5k
Cloudflare Workersで進めるリモートMCP活用
syumai
12
1.7k
Live Coding: Migrating an Application to Signals
manfredsteyer
PRO
0
130
Featured
See All Featured
Fireside Chat
paigeccino
37
3.4k
Java REST API Framework Comparison - PWX 2021
mraible
31
8.6k
A designer walks into a library…
pauljervisheath
205
24k
Code Review Best Practice
trishagee
68
18k
Writing Fast Ruby
sferik
628
61k
Into the Great Unknown - MozCon
thekraken
38
1.8k
Mobile First: as difficult as doing things right
swwweet
223
9.6k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
34
2.2k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
122
52k
Building Adaptive Systems
keathley
41
2.5k
Gamification - CAS2011
davidbonilla
81
5.3k
How STYLIGHT went responsive
nonsquared
100
5.5k
Transcript
None
Andrew Godwin Hi, I'm Django core developer Senior Software Engineer
at Used to complain about migrations a lot
Distributed Systems
c = 299,792,458 m/s
Early CPUs c = 60m propagation distance Clock ~2cm 5
MHz
Modern CPUs c = 10cm propagation distance 3 GHz
Distributed systems are made of independent components
They are slower and harder to write than synchronous systems
But they can be scaled up much, much further
Trade-offs
There is never a perfect solution.
Fast Good Cheap
None
Load Balancer WSGI Worker WSGI Worker WSGI Worker
Load Balancer WSGI Worker WSGI Worker WSGI Worker Cache
Load Balancer WSGI Worker WSGI Worker WSGI Worker Cache Cache
Cache
Load Balancer WSGI Worker WSGI Worker WSGI Worker Database
CAP Theorem
Partition Tolerant Consistent Available
PostgreSQL: CP Consistent everywhere Handles network latency/drops Can't write if
main server is down
Cassandra: AP Can read/write to any node Handles network latency/drops
Data can be inconsistent
It's hard to design a product that might be inconsistent
But if you take the tradeoff, scaling is easy
Otherwise, you must find other solutions
Read Replicas (often called master/slave) Load Balancer WSGI Worker WSGI
Worker WSGI Worker Replica Replica Main
Replicas scale reads forever... But writes must go to one
place
If a request writes to a table it must be
pinned there, so later reads do not get old data
When your write load is too high, you must then
shard
Vertical Sharding Users Tickets Events Payments
Horizontal Sharding Users 0 - 2 Users 3 - 5
Users 6 - 8 Users 9 - A
Both Users 0 - 2 Users 3 - 5 Users
6 - 8 Users 9 - A Events 0 - 2 Events 3 - 5 Events 6 - 8 Events 9 - A Tickets 0 - 2 Tickets 3 - 5 Tickets 6 - 8 Tickets 9 - A
Both plus caching Users 0 - 2 Users 3 -
5 Users 6 - 8 Users 9 - A Events 0 - 2 Events 3 - 5 Events 6 - 8 Events 9 - A Tickets 0 - 2 Tickets 3 - 5 Tickets 6 - 8 Tickets 9 - A User Cache Event Cache Ticket Cache
Teams have to scale too; nobody should have to understand
eveything in a big system.
Services allow complexity to be reduced - for a tradeoff
of speed
Users 0 - 2 Users 3 - 5 Users 6
- 8 Users 9 - A Events 0 - 2 Events 3 - 5 Events 6 - 8 Events 9 - A Tickets 0 - 2 Tickets 3 - 5 Tickets 6 - 8 Tickets 9 - A User Cache Event Cache Ticket Cache User Service Event Service Ticket Service
User Service Event Service Ticket Service WSGI Server
Each service is its own, smaller project, managed and scaled
separately.
But how do you communicate between them?
Service 2 Service 3 Service 1 Direct Communication
Service 2 Service 3 Service 1 Service 4 Service 5
Service 2 Service 3 Service 1 Service 4 Service 5
Service 6 Service 7 Service 8
Service 2 Service 3 Service 1 Message Bus Service 2
Service 3 Service 1
A single point of failure is not always bad -
if the alternative is multiple, fragile ones
Channels and ASGI provide a standard message bus built with
certain tradeoffs
Backing Store e.g. Redis, RabbitMQ ASGI (Channel Layer) Channels Library
Django Django Channels Project
Backing Store e.g. Redis, RabbitMQ ASGI (Channel Layer) Pure Python
Failure Mode At most once Messages either do not arrive,
or arrive once. At least once Messages arrive once, or arrive multiple times
Guarantees vs. Latency Low latency Messages arrive very quickly but
go missing more Low loss rate Messages are almost never lost but arrive slower
Queuing Type First In First Out Consistent performance for all
users First In Last Out Hides backlogs but makes them worse
Queue Sizing Finite Queues Sending can fail Infinite queues Makes
problems even worse
You must understand what you are making (This is surprisingly
uncommon)
Design as much as possible around shared-nothing
Per-machine caches On-demand thumbnailing Signed cookie sessions
Has to be shared? Try to split it
Has to be shared? Try sharding it.
Django's job is to be slowly replaced by your code
Just make sure you match the API contract of what
you're replacing!
Don't try to scale too early; you'll pick the wrong
tradeoffs.
Thanks. Andrew Godwin @andrewgodwin channels.readthedocs.io