Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Scaling Django with Distributed Systems
Search
Andrew Godwin
April 07, 2017
Programming
3
2.1k
Scaling Django with Distributed Systems
A talk I gave at PyCon Ukraine 2017.
Andrew Godwin
April 07, 2017
Tweet
Share
More Decks by Andrew Godwin
See All by Andrew Godwin
Reconciling Everything
andrewgodwin
1
260
Django Through The Years
andrewgodwin
0
160
Writing Maintainable Software At Scale
andrewgodwin
0
400
A Newcomer's Guide To Airflow's Architecture
andrewgodwin
0
310
Async, Python, and the Future
andrewgodwin
2
620
How To Break Django: With Async
andrewgodwin
1
670
Taking Django's ORM Async
andrewgodwin
0
680
The Long Road To Asynchrony
andrewgodwin
0
600
The Scientist & The Engineer
andrewgodwin
1
700
Other Decks in Programming
See All in Programming
ESLintプラグインを使用してCDKのセオリーを適用する
yamanashi_ren01
2
240
AWSのLambdaで PHPを動かす選択肢
rinchoku
2
390
2025.01.17_Sansan × DMM.swift
riofujimon
2
570
Fixstars高速化コンテスト2024準優勝解法
eijirou
0
190
.NETでOBS Studio操作してみたけど…… / Operating OBS Studio by .NET
skasweb
0
120
生成AIでGitHubソースコード取得して仕様書を作成
shukob
0
630
サーバーゆる勉強会 DBMS の仕組み編
kj455
1
300
Итераторы в Go 1.23: зачем они нужны, как использовать, и насколько они быстрые?
lamodatech
0
1.4k
rails newと同時に型を書く
aki19035vc
5
710
Alba: Why, How and What's So Interesting
okuramasafumi
0
210
DevinとCursorから学ぶAIエージェントメモリーの設計とMoatの考え方
itarutomy
0
150
PHPとAPI Platformで作る本格的なWeb APIアプリケーション(入門編) / phpcon 2024 Intro to API Platform
ttskch
0
390
Featured
See All Featured
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Bash Introduction
62gerente
610
210k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.4k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
6
500
Adopting Sorbet at Scale
ufuk
74
9.2k
Writing Fast Ruby
sferik
628
61k
RailsConf 2023
tenderlove
29
970
jQuery: Nuts, Bolts and Bling
dougneiner
62
7.6k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
Keith and Marios Guide to Fast Websites
keithpitt
410
22k
Making the Leap to Tech Lead
cromwellryan
133
9k
Transcript
None
Andrew Godwin Hi, I'm Django core developer Senior Software Engineer
at Used to complain about migrations a lot
Distributed Systems
c = 299,792,458 m/s
Early CPUs c = 60m propagation distance Clock ~2cm 5
MHz
Modern CPUs c = 10cm propagation distance 3 GHz
Distributed systems are made of independent components
They are slower and harder to write than synchronous systems
But they can be scaled up much, much further
Trade-offs
There is never a perfect solution.
Fast Good Cheap
None
Load Balancer WSGI Worker WSGI Worker WSGI Worker
Load Balancer WSGI Worker WSGI Worker WSGI Worker Cache
Load Balancer WSGI Worker WSGI Worker WSGI Worker Cache Cache
Cache
Load Balancer WSGI Worker WSGI Worker WSGI Worker Database
CAP Theorem
Partition Tolerant Consistent Available
PostgreSQL: CP Consistent everywhere Handles network latency/drops Can't write if
main server is down
Cassandra: AP Can read/write to any node Handles network latency/drops
Data can be inconsistent
It's hard to design a product that might be inconsistent
But if you take the tradeoff, scaling is easy
Otherwise, you must find other solutions
Read Replicas (often called master/slave) Load Balancer WSGI Worker WSGI
Worker WSGI Worker Replica Replica Main
Replicas scale reads forever... But writes must go to one
place
If a request writes to a table it must be
pinned there, so later reads do not get old data
When your write load is too high, you must then
shard
Vertical Sharding Users Tickets Events Payments
Horizontal Sharding Users 0 - 2 Users 3 - 5
Users 6 - 8 Users 9 - A
Both Users 0 - 2 Users 3 - 5 Users
6 - 8 Users 9 - A Events 0 - 2 Events 3 - 5 Events 6 - 8 Events 9 - A Tickets 0 - 2 Tickets 3 - 5 Tickets 6 - 8 Tickets 9 - A
Both plus caching Users 0 - 2 Users 3 -
5 Users 6 - 8 Users 9 - A Events 0 - 2 Events 3 - 5 Events 6 - 8 Events 9 - A Tickets 0 - 2 Tickets 3 - 5 Tickets 6 - 8 Tickets 9 - A User Cache Event Cache Ticket Cache
Teams have to scale too; nobody should have to understand
eveything in a big system.
Services allow complexity to be reduced - for a tradeoff
of speed
Users 0 - 2 Users 3 - 5 Users 6
- 8 Users 9 - A Events 0 - 2 Events 3 - 5 Events 6 - 8 Events 9 - A Tickets 0 - 2 Tickets 3 - 5 Tickets 6 - 8 Tickets 9 - A User Cache Event Cache Ticket Cache User Service Event Service Ticket Service
User Service Event Service Ticket Service WSGI Server
Each service is its own, smaller project, managed and scaled
separately.
But how do you communicate between them?
Service 2 Service 3 Service 1 Direct Communication
Service 2 Service 3 Service 1 Service 4 Service 5
Service 2 Service 3 Service 1 Service 4 Service 5
Service 6 Service 7 Service 8
Service 2 Service 3 Service 1 Message Bus Service 2
Service 3 Service 1
A single point of failure is not always bad -
if the alternative is multiple, fragile ones
Channels and ASGI provide a standard message bus built with
certain tradeoffs
Backing Store e.g. Redis, RabbitMQ ASGI (Channel Layer) Channels Library
Django Django Channels Project
Backing Store e.g. Redis, RabbitMQ ASGI (Channel Layer) Pure Python
Failure Mode At most once Messages either do not arrive,
or arrive once. At least once Messages arrive once, or arrive multiple times
Guarantees vs. Latency Low latency Messages arrive very quickly but
go missing more Low loss rate Messages are almost never lost but arrive slower
Queuing Type First In First Out Consistent performance for all
users First In Last Out Hides backlogs but makes them worse
Queue Sizing Finite Queues Sending can fail Infinite queues Makes
problems even worse
You must understand what you are making (This is surprisingly
uncommon)
Design as much as possible around shared-nothing
Per-machine caches On-demand thumbnailing Signed cookie sessions
Has to be shared? Try to split it
Has to be shared? Try sharding it.
Django's job is to be slowly replaced by your code
Just make sure you match the API contract of what
you're replacing!
Don't try to scale too early; you'll pick the wrong
tradeoffs.
Thanks. Andrew Godwin @andrewgodwin channels.readthedocs.io