Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Small Data: Storage For The Rest Of Us
Search
Andrew Godwin
May 26, 2015
Programming
1
570
Small Data: Storage For The Rest Of Us
A talk I gave at PyWaw Summit 2015.
Andrew Godwin
May 26, 2015
Tweet
Share
More Decks by Andrew Godwin
See All by Andrew Godwin
Reconciling Everything
andrewgodwin
1
310
Django Through The Years
andrewgodwin
0
200
Writing Maintainable Software At Scale
andrewgodwin
0
440
A Newcomer's Guide To Airflow's Architecture
andrewgodwin
0
350
Async, Python, and the Future
andrewgodwin
2
660
How To Break Django: With Async
andrewgodwin
1
730
Taking Django's ORM Async
andrewgodwin
0
720
The Long Road To Asynchrony
andrewgodwin
0
660
The Scientist & The Engineer
andrewgodwin
1
760
Other Decks in Programming
See All in Programming
Composerが「依存解決」のためにどんな工夫をしているか #phpcon
o0h
PRO
1
270
なぜ適用するか、移行して理解するClean Architecture 〜構造を超えて設計を継承する〜 / Why Apply, Migrate and Understand Clean Architecture - Inherit Design Beyond Structure
seike460
PRO
3
780
猫と暮らす Google Nest Cam生活🐈 / WebRTC with Google Nest Cam
yutailang0119
0
140
なんとなくわかった気になるブロックテーマ入門/contents.nagoya 2025 6.28
chiilog
1
270
Webの外へ飛び出せ NativePHPが切り拓くPHPの未来
takuyakatsusa
2
560
Rubyでやりたい駆動開発 / Ruby driven development
chobishiba
1
730
Deep Dive into ~/.claude/projects
hiragram
14
2.6k
RailsGirls IZUMO スポンサーLT
16bitidol
0
190
0626 Findy Product Manager LT Night_高田スライド_speaker deck用
mana_takada
0
180
Claude Code + Container Use と Cursor で作る ローカル並列開発環境のススメ / ccc local dev
kaelaela
10
5.7k
PostgreSQLのRow Level SecurityをPHPのORMで扱う Eloquent vs Doctrine #phpcon #track2
77web
2
530
PHPで始める振る舞い駆動開発(Behaviour-Driven Development)
ohmori_yusuke
2
400
Featured
See All Featured
Rails Girls Zürich Keynote
gr2m
95
14k
Build The Right Thing And Hit Your Dates
maggiecrowley
36
2.8k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
The Invisible Side of Design
smashingmag
301
51k
Designing Experiences People Love
moore
142
24k
Docker and Python
trallard
44
3.5k
We Have a Design System, Now What?
morganepeng
53
7.7k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Facilitating Awesome Meetings
lara
54
6.4k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.4k
Transcript
Andrew Godwin @andrewgodwin SMALL DATA STORAGE FOR THE REST OF
US
Andrew Godwin Hi, I'm Django Core Developer Senior Engineer at
Far too many hobbies
BIG DATA What does it mean?
BIG DATA What does it mean? What is 'big'?
1,000 rows? 1,000,000 rows? 1,000,000,000 rows? 1,000,000,000,000 rows?
Scalable designs are a tradeoff: NOW LATER vs
Small company? Agency? Focus on ease of change, not scalability
You don't need to scale from day one But always
leave yourself scaling points
Rapid development Continuous deployment Hardware choice Scaling 'breakpoints'
Rapid development It's all about schema change overhead
Explicit Schema ID int Name text Weight uint 1 2
3 Alice Bob Charles 76 84 65 Implicit Schema { "id": 342, "name": "David", "weight": 44, }
Silent Failure { "id": 342, "name": "David", "weight": 74, }
{ "id": 342, "name": "Ellie", "weight": "85kg", } { "id": 342, "nom": "Frankie", "weight": 77, } { "id": 342, "name": "Frankie", "weight": -67, }
Continuous deployment It's 11pm. Do you know where your locks
are?
Add NULL and backfill 1-to-1 relation and backfill DBMS-supported type
changes
Hardware choice ZOMG RUN IT ON THE CLOUD
VMs are TERRIBLE at IO Up to 10x slowdown, even
with VT-d.
Memory is king Your database loves it. Don't let other
apps steal it.
Adding more power goes far Especially with PostgreSQL or read-only
replicas
Scaling Breakpoints
Sharding point Datasets paritioned by primary key
Vertical split Entirely unrelated tables
Denormalisation It's not free!
Consistency leeway Can you take inconsistent views?
Load Shapes
Read-heavy Write-heavy Large size
Read-heavy Write-heavy Large size Wikipedia TV show website Minecraft Forums
Amazon Glacier Eventbrite Logging
Read-heavy Write-heavy Large size Offline storage Append formats In-memory cache
/ flat files Many indexes Fewer indexes
Extremes
Extreme Reads Heavy Replication Extreme Writes Sacrifice ordering or consistency
Extreme Size Sacrifice query time
Extreme Longevity Flash in cold storage Extreme Survivability Rad-hardened Flash
Extreme Auditability True append only storage
SSDs Magnetic Tape Hard Drives Consumer Flash CDs/DVDs Long-life Flash
Metal-Carbon DVDs 3-6 months 5-10 years 3-5 years 100+ years Approximate time to bit flip, unpowered at room temperature
Big Data isn't one thing It depends on type, size,
complexity, throughput, latency...
Focus on the current problems Future problems don't matter if
you never get there
Efficiency and iterating fast matters The smaller you are, the
more time is worth
Good architecture affects product You're not writing a system in
a vacuum
Thanks. Andrew Godwin @andrewgodwin