Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
実用 Confident Learning
Search
Asei Sugiyama
October 13, 2022
Technology
2
3.7k
実用 Confident Learning
みんなのPython勉強会#86 での発表資料です
https://speakerdeck.com/asei/confident-learning
よりも事例の紹介に注力しています
Asei Sugiyama
October 13, 2022
Tweet
Share
More Decks by Asei Sugiyama
See All by Asei Sugiyama
エージェントの継続的改善のためのメトリクス再考
asei
3
560
生成AI活用のベストプラクティス集を作ってる件
asei
1
730
GenAIOps: 生成AI時代の DevOps
asei
0
44
生成AI活用の実践解説 (速報版)
asei
1
1.3k
実践AIガバナンス
asei
3
820
Eval-Centric AI: Agent 開発におけるベストプラクティスの探求
asei
1
320
AI工学特論: MLOps・継続的評価
asei
11
2.9k
生成AIを用いるサービス開発の原則
asei
1
81
基調講演: 生成AIを活用したアプリケーションの開発手法とは?
asei
2
580
Other Decks in Technology
See All in Technology
GCASアップデート(202508-202510)
techniczna
0
350
AI-ready"のための"データ基盤 〜 LLMOpsで事業貢献するための基盤づくり
ismk
0
120
JAWS UG AI/ML #32 Amazon BedrockモデルのライフサイクルとEOL対応/How Amazon Bedrock Model Lifecycle Works
quiver
1
820
触れるけど壊れないWordPressの作り方
masakawai
0
670
20251106 Offers DeepDive 知識を民主化!あらゆる業務のスピードと品質を 改善するためのドキュメント自動更新・活用術
masashiyokota
0
190
AWS re:Invent 2025事前勉強会資料 / AWS re:Invent 2025 pre study meetup
kinunori
0
1.1k
LLM APIを2年間本番運用して苦労した話
ivry_presentationmaterials
10
8.1k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
2
270
Playwrightで始めるUI自動テスト入門
devops_vtj
0
140
窓口業務を生成AIにおまかせ!Bedrock Agent Coreで実現する自治体AIエージェント!
rayofhopejp
0
170
AI時代に必要なデータプラットフォームの要件とは by @Kazaneya_PR / 20251107
kazaneya
PRO
4
690
30分でわかる!!『OCI で学ぶクラウドネイティブ実践 X 理論ガイド』
oracle4engineer
PRO
1
110
Featured
See All Featured
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.1k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
Practical Orchestrator
shlominoach
190
11k
Code Reviewing Like a Champion
maltzj
526
40k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.2k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
A better future with KSS
kneath
239
18k
Designing for Performance
lara
610
69k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
Transcript
Confident Learning Asei Sugiyama
TOC Data-centric AI 振り返り <- Confident Learning 概要 実践 Confident
Learning
Data-centric AI 振り返り Data-centric AI Confident Learning Data Perf
Data-centric AI データの改善に着目したム ーブメント モデルよりもデータの改善 のほうが効果的という Andrew Ng の過去の経験に 基づく
2021 年 12 月に大きなワー クショップが行われた
Confident Learning ワークショップの中で紹介 された取り組みの 1 つ データセットに含まれるラ ベルの誤りを検出 詳細は後述
Data Perf ML Perf: 機械学習アルゴリ ズムのベンチマーク Data Perf: データセットのベ ンチマーク
いずれはアルゴリズム - テ スト - データセットをすべ てインクリメンタルに改善 するフレームワークを提供 するという野心的な提案
TOC Data-centric AI 振り返り Confident Learning 概要 <- 実践 Confident
Learning
Confident Learning 概要 背景 論文の内容 手法 結果 Pervasive Label Errors
in Test Sets Destabilize Machine Learning Benchmarks https://arxiv.org/abs/2103.14749
背景 Hinton が MNIST (LeCun が作成) の 誤り 1 件を見つけて喜んでいるのを
見ていた 「こんなに有名な人がこんなに喜ん でいるのならこれは価値があるので は」と思ったのがきっかけ Cleanlab: Labeled Datasets that Correct Themselves Automatically // Curtis Northcutt // MLOps Coffee Sessions #105 https://anchor.fm/mlops/episodes/Cleanlab-Labeled- Datasets-that-Correct-Themselves-Automatically--Curtis-Northcutt--MLOps-Coffee- Sessions-105-e1k777l/a-a850eq6
論文の内容 Confident Learning という 手法を提案 多クラス分類において、既 存の手法よりも効率的にラ ベルの誤りを発見 MNIST, ImageNet
などのデ ータセットにラベルの誤り を実際に発見した Pervasive Label Errors in Test Sets Destabilize Machine Learning Benchmarks https://arxiv.org/abs/2103.14749
手法 データセットを用いてモデ ルを訓練 & 推論 (k-fold) 推論結果に Confident Learning を適用し、誤りが
疑われるデータの一覧を作 成 Amazon Mechanical Turk で改めてアノテーション Pervasive Label Errors in Test Sets Destabilize Machine Learning Benchmarks https://arxiv.org/abs/2103.14749
結果: データセットの誤り率 Pervasive Label Errors in Test Sets Destabilize Machine
Learning Benchmarks https://arxiv.org/abs/2103.14749
結果: 提案のワークフローで発生する見逃し Pervasive Label Errors in Test Sets Destabilize Machine
Learning Benchmarks https://arxiv.org/abs/2103.14749
どうしようもない例 右の画像は ImageNet で tick (ダニ) とラベル付けされたもの クラウドソーシングで scorpion とラ
ベルが振り直された 実際は Solifugae (ヒヨケムシ、クモ やサソリではない)
TOC Data-centric AI 振り返り Confident Learning 概要 実践 Confident Learning
<-
背景 画像から疾病の陽性/陰性を判定する機械学習モデルを構築中 陽性/陰性の判定には高い専門性が必要なため、少数の専門家 (医療業務 従事者) が画像をアノテーション 構築したデータセットをもとに画像から陽性/陰性を判定するモデルを構 築 テストデータにおいてモデルが誤った画像について、専門家に念のため の再確認したところ、機械学習モデルの判断のほうが正しかったという
結果に
問題 構築した画像データセットに誤りがどの程度含まれているのか不明 データセットに含まれる画像が 4,000 件あり、今後も増える予定 専門家が全件チェックするのは現実的でないし、全件チェックした結果 を信用してよいのかどうかも不明
目標 1. アノテーションの結果がどの程度信用できるのか見積もること 2. データセットに含まれる誤りを効率的に修正するための手法を確立する こと
Clean Lab Confident Learning の OSS 実装 Python から利用可能 cleanlab/cleanlab
https://github.com/cleanlab/cleanlab
コード アルゴリズムはモデルの出力のみを用いるため、幅広い分類モデルを利 用可能 from cleanlab.filter import find_label_issues ordered_label_issues = find_label_issues(
labels=labels, pred_probs=pred_probs, return_indices_ranked_by='self_confidence', )
結果 画像 4000 枚から40件の誤りを特定、修正できた 種別 枚数 割合 全画像 4000 枚
100% Confident Learning により抽出した画像 250 枚 6.25% 再レビューの結果、陽性/陰性が修正された件数 40 枚 1%
考察 アノテーションの誤りは概ね正しく抽出できていると思われる 今回のデータセットにおいて検出できた誤りは 1% 程度 これは公開されている品質の高いデータセットとほとんど同じ アノテーションの誤りを効率的に修正する手法は確立できた レビュー対象を 4,000 枚から
250 枚 (6%) に集約できた 見逃しもあると思われるため、データの収集と修正を繰り返し実施する 必要性も明らかになった
まとめ Confident Learning はラベルの誤りを発見することでデータの品質向上 に取り組むアルゴリズム ImageNet などのデータセットに対してアルゴリズムを適用することで 実際に誤りを発見 アルゴリズムを実際のデータセットに適用してみたところ、誤りを発見 し、修正できた