Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
最近の Citadel AI の取り組みのご紹介 (Nov, 2024)
Search
Asei Sugiyama
October 08, 2024
Technology
2
110
最近の Citadel AI の取り組みのご紹介 (Nov, 2024)
MLSE LLM ドメイン適用 WG向けに最近の取り組みをご紹介した資料です
Asei Sugiyama
October 08, 2024
Tweet
Share
More Decks by Asei Sugiyama
See All by Asei Sugiyama
MLOps の現場から
asei
8
850
LLMOps: Eval-Centric を前提としたMLOps
asei
7
610
The Rise of LLMOps
asei
13
2.9k
生成AIの活用パターンと継続的評価
asei
15
2.4k
仕事で取り組む 生成 AI 時代の対話の品質評価
asei
2
81
MLOps の処方箋ができるまで
asei
3
620
LLM を現場で評価する
asei
5
990
生成 AI の評価方法
asei
8
2.3k
対話品質の評価に向き合う
asei
3
440
Other Decks in Technology
See All in Technology
技術的負債解消の取り組みと専門チームのお話 #技術的負債_Findy
bengo4com
1
1.2k
Datadogとともにオブザーバビリティを布教しよう
mego2221
0
120
君も受託系GISエンジニアにならないか
sudataka
0
330
依存関係があるコンポーネントは Barrel ファイルでまとめよう
azukiazusa1
3
520
個人開発から公式機能へ: PlaywrightとRailsをつなげた3年の軌跡
yusukeiwaki
10
2.5k
Moved to https://speakerdeck.com/toshihue/presales-engineer-career-bridging-tech-biz-ja
toshihue
2
410
テストアーキテクチャ設計で実現する高品質で高スピードな開発の実践 / Test Architecture Design in Practice
ropqa
3
590
データの品質が低いと何が困るのか
kzykmyzw
6
1k
Active Directory の保護
eurekaberry
7
3.9k
Kubernetes x k6 で負荷試験基盤を開発して 負荷試験を民主化した話 / Kubernetes x k6
sansan_randd
2
710
MC906491 を見据えた Microsoft Entra Connect アップグレード対応
tamaiyutaro
1
460
実践!OpenTelemetry
oracle4engineer
PRO
0
220
Featured
See All Featured
A Philosophy of Restraint
colly
203
16k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
3
300
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
232
17k
Fashionably flexible responsive web design (full day workshop)
malarkey
406
66k
Visualization
eitanlees
146
15k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Building an army of robots
kneath
302
45k
Automating Front-end Workflow
addyosmani
1367
200k
KATA
mclloyd
29
14k
Building Better People: How to give real-time feedback that sticks.
wjessup
366
19k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.3k
Embracing the Ebb and Flow
colly
84
4.6k
Transcript
©2021-2024 Citadel AI Inc. LLM ドメイン適⽤ WG 向け Citadel AI
の取り 組みのご紹介 株式会社 Citadel AI
CONFIDENTIAL ©2021-2024 Citadel AI Inc. TOC - Citadel AI のご紹介
- 対話ログの分析ワークフローのご紹介 - 今後の展望 - ご相談 2
Citadel AI のご紹介 #1 3
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 4 Trusted by Global Companies
Contributing to Trustworthy AI US AISIC (US) The AI Alliance (Meta/IBM) 安全安⼼な「信頼できるAI」を実現
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 5 ミスが許されない AI システムの品質検証 銀行・保険
など 医療・ヘルスケア 自動車・製造業
CONFIDENTIAL ©2021-2024 AI ライフサイクル全体の信頼性‧品質を向上 6 開発中の モデル データセット 1. モデル開発時の自動検証
自動 テスト モデル評価 レポート 2. モデル運用時の自動監視 運用中の モデル 自動 モニタリング 再学習
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 7 ⼤規模⾔語モデルの評価ツール Lens for
LLMs Human Eval Automated Eval Lens Fast ❌ ✅ ✅ Accurate ✅ ❌ ✅ ✅ ⼤量の網羅的な⾃動評価に ✅ 少量の⼈⼿評価を組み合わせ ✅ 両者の強みをインテグレート
対話ログの分析ワークフローの ご紹介 #2 8
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 対話の品質評価の 3 つの⽅法 - ベンチマークを⽤いた事前評価
: QA4AI ガイドライン - 仮想シナリオを⽤いた事前評価 : デジタル庁のレポート - 対話ログを⽤いた事後評価: 弊社での取り組み 9 評価手法 ベンチマーク 仮想シナリオ 対話ログ 事前評価可能 ✓ ✓ カスタマイズ性 ✓ 特定業務の品質評価 ✓
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 対話ログの分析ワークフロー概要 10 全対話ログ サンプル (1000ユーザー)
RAGあり RAGなし 一般質問 100件 (目標) 要約 100件 (目標) 要約 100件 (目標) 翻訳 100件 (目標) 人手による 精度検証 自動化された指標 との比較 人手による 精度検証 自動化された指標 との比較 人手による 精度検証 自動化された指標 との比較 人手による 精度検証 自動化された指標 との比較 Step1. データの確認 Step2. 用途の確認 Step3. 人手での検証 Step4. 自動化の検討 … …
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 分析⽅法のデモ - Lens for LLMs
と Azure OpenAI の画⾯を⽤いてご紹介 1. 対話ログのカテゴリ抽出 2. 対話ログのカテゴリ分類‧評価 11
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 評価 - ⼈⼿で分類したアノテーション結果と、⽣成したプロンプトを⽤いた評価結 果を⽐較 -
カテゴリ抽出では⼈⼿で作成したカテゴリと類似するカテゴリを作成するこ とに成功した - カテゴリ分類では⼈⼿とほぼ変わらない精度で分類可能 - 「⼀般的な知識で回答できない質問かどうか」「健康問題に関する相談を含 んでいるか」「攻撃的なプロンプトを含んでいないか」もプロンプトにより 判定可能 12
今後の展望 #3 13
CONFIDENTIAL ©2021-2024 Citadel AI Inc. モデルの性能改善の3類型 14 モデル データ テスト
モデル データ テスト モデル データ テスト Kaggle型 モデルを改善 Data-Centric型 データを改善 API型 テストを改善 既存のノウハウが乏しい
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 問題意識 - 網羅的な評価観点を最初から取り揃 えることは無理 -
さまざまな⽤途に利⽤できるため、 ユースケースを列挙できない - 世論が変化することで新たな評価基 準があとから出現する 15 モデル データ テスト API型 テストを改善
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 継続的な評価 - 評価 → 指標の設計
→ 評価を反復 - すべての評価観点を最初から網羅す るのではなく、利⽤を通じて徐々に 評価観点を育てていく - 評価を⾏うことで、既存の評価観点 では抜け落ちるケースに気が付き、 新たな評価観点に気がつく 16 モデル データ テスト API型 テストを改善
19