Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
最近の Citadel AI の取り組みのご紹介 (Nov, 2024)
Search
Asei Sugiyama
October 08, 2024
Technology
2
230
最近の Citadel AI の取り組みのご紹介 (Nov, 2024)
MLSE LLM ドメイン適用 WG向けに最近の取り組みをご紹介した資料です
Asei Sugiyama
October 08, 2024
Tweet
Share
More Decks by Asei Sugiyama
See All by Asei Sugiyama
エージェントの継続的改善のためのメトリクス再考
asei
3
210
生成AI活用のベストプラクティス集を作ってる件
asei
1
440
GenAIOps: 生成AI時代の DevOps
asei
0
31
生成AI活用の実践解説 (速報版)
asei
1
570
実践AIガバナンス
asei
3
650
Eval-Centric AI: Agent 開発におけるベストプラクティスの探求
asei
1
300
AI工学特論: MLOps・継続的評価
asei
11
2.8k
生成AIを用いるサービス開発の原則
asei
1
78
基調講演: 生成AIを活用したアプリケーションの開発手法とは?
asei
2
550
Other Decks in Technology
See All in Technology
20250929_QaaS_vol20
mura_shin
0
110
生成AIを活用したZennの取り組み事例
ryosukeigarashi
0
200
[2025-09-30] Databricks Genie を利用した分析基盤とデータモデリングの IVRy の現在地
wxyzzz
0
470
Function calling機能をPLaMo2に実装するには / PFN LLMセミナー
pfn
PRO
0
920
ACA でMAGI システムを社内で展開しようとした話
mappie_kochi
1
250
FastAPIの魔法をgRPC/Connect RPCへ
monotaro
PRO
1
740
AI駆動開発を推進するためにサービス開発チームで 取り組んでいること
noayaoshiro
0
160
自動テストのコストと向き合ってみた
qa
0
120
BirdCLEF+2025 Noir 5位解法紹介
myso
0
190
KMP の Swift export
kokihirokawa
0
330
Exadata Database Service on Dedicated Infrastructure(ExaDB-D) UI スクリーン・キャプチャ集
oracle4engineer
PRO
2
5.4k
OpenAI gpt-oss ファインチューニング入門
kmotohas
2
960
Featured
See All Featured
Side Projects
sachag
455
43k
BBQ
matthewcrist
89
9.8k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
How STYLIGHT went responsive
nonsquared
100
5.8k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.1k
Writing Fast Ruby
sferik
629
62k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.7k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Faster Mobile Websites
deanohume
310
31k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Done Done
chrislema
185
16k
Bash Introduction
62gerente
615
210k
Transcript
©2021-2024 Citadel AI Inc. LLM ドメイン適⽤ WG 向け Citadel AI
の取り 組みのご紹介 株式会社 Citadel AI
CONFIDENTIAL ©2021-2024 Citadel AI Inc. TOC - Citadel AI のご紹介
- 対話ログの分析ワークフローのご紹介 - 今後の展望 - ご相談 2
Citadel AI のご紹介 #1 3
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 4 Trusted by Global Companies
Contributing to Trustworthy AI US AISIC (US) The AI Alliance (Meta/IBM) 安全安⼼な「信頼できるAI」を実現
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 5 ミスが許されない AI システムの品質検証 銀行・保険
など 医療・ヘルスケア 自動車・製造業
CONFIDENTIAL ©2021-2024 AI ライフサイクル全体の信頼性‧品質を向上 6 開発中の モデル データセット 1. モデル開発時の自動検証
自動 テスト モデル評価 レポート 2. モデル運用時の自動監視 運用中の モデル 自動 モニタリング 再学習
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 7 ⼤規模⾔語モデルの評価ツール Lens for
LLMs Human Eval Automated Eval Lens Fast ❌ ✅ ✅ Accurate ✅ ❌ ✅ ✅ ⼤量の網羅的な⾃動評価に ✅ 少量の⼈⼿評価を組み合わせ ✅ 両者の強みをインテグレート
対話ログの分析ワークフローの ご紹介 #2 8
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 対話の品質評価の 3 つの⽅法 - ベンチマークを⽤いた事前評価
: QA4AI ガイドライン - 仮想シナリオを⽤いた事前評価 : デジタル庁のレポート - 対話ログを⽤いた事後評価: 弊社での取り組み 9 評価手法 ベンチマーク 仮想シナリオ 対話ログ 事前評価可能 ✓ ✓ カスタマイズ性 ✓ 特定業務の品質評価 ✓
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 対話ログの分析ワークフロー概要 10 全対話ログ サンプル (1000ユーザー)
RAGあり RAGなし 一般質問 100件 (目標) 要約 100件 (目標) 要約 100件 (目標) 翻訳 100件 (目標) 人手による 精度検証 自動化された指標 との比較 人手による 精度検証 自動化された指標 との比較 人手による 精度検証 自動化された指標 との比較 人手による 精度検証 自動化された指標 との比較 Step1. データの確認 Step2. 用途の確認 Step3. 人手での検証 Step4. 自動化の検討 … …
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 分析⽅法のデモ - Lens for LLMs
と Azure OpenAI の画⾯を⽤いてご紹介 1. 対話ログのカテゴリ抽出 2. 対話ログのカテゴリ分類‧評価 11
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 評価 - ⼈⼿で分類したアノテーション結果と、⽣成したプロンプトを⽤いた評価結 果を⽐較 -
カテゴリ抽出では⼈⼿で作成したカテゴリと類似するカテゴリを作成するこ とに成功した - カテゴリ分類では⼈⼿とほぼ変わらない精度で分類可能 - 「⼀般的な知識で回答できない質問かどうか」「健康問題に関する相談を含 んでいるか」「攻撃的なプロンプトを含んでいないか」もプロンプトにより 判定可能 12
今後の展望 #3 13
CONFIDENTIAL ©2021-2024 Citadel AI Inc. モデルの性能改善の3類型 14 モデル データ テスト
モデル データ テスト モデル データ テスト Kaggle型 モデルを改善 Data-Centric型 データを改善 API型 テストを改善 既存のノウハウが乏しい
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 問題意識 - 網羅的な評価観点を最初から取り揃 えることは無理 -
さまざまな⽤途に利⽤できるため、 ユースケースを列挙できない - 世論が変化することで新たな評価基 準があとから出現する 15 モデル データ テスト API型 テストを改善
CONFIDENTIAL ©2021-2024 Citadel AI Inc. 継続的な評価 - 評価 → 指標の設計
→ 評価を反復 - すべての評価観点を最初から網羅す るのではなく、利⽤を通じて徐々に 評価観点を育てていく - 評価を⾏うことで、既存の評価観点 では抜け落ちるケースに気が付き、 新たな評価観点に気がつく 16 モデル データ テスト API型 テストを改善
19