Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
2D 绘图中的坐标系统和坐标变换
Search
Baidu FEX Team
May 07, 2014
Technology
4
1k
2D 绘图中的坐标系统和坐标变换
本文介绍在 2D 绘图技术中的坐标系统和坐标变换的相关知识。同时介绍 Kity 在这方面提供的 API 。希望这些知识对于需要进行图形应用开发的同学会有所帮助。
Baidu FEX Team
May 07, 2014
Tweet
Share
More Decks by Baidu FEX Team
See All by Baidu FEX Team
HTML5富交互与社交传播
baidufe
1
860
F.I.S——提升产品性能与开发效率的前端解决方案
baidufe
1
670
跨端组件实践
baidufe
7
770
如何成为一名优秀的前端工程师
baidufe
19
2.5k
静态资源自动合并系统
baidufe
12
2.3k
基于HTML5技术的文件上传
baidufe
4
2.3k
百度前端基础数据平台介绍
baidufe
17
3.2k
Web富应⽤用的设计与开发
baidufe
4
790
如何做导师
baidufe
9
820
Other Decks in Technology
See All in Technology
プライベートクラウドでの効率的な証明書配布戦略 / Efficient Certificate Distribution Strategy in Private Cloud
lycorptech_jp
PRO
0
110
ビズリーチにおけるリアーキテクティング実践事例 / JJUG CCC 2025 Spring
visional_engineering_and_design
1
120
「クラウドコスト絶対削減」を支える技術—FinOpsを超えた徹底的なクラウドコスト削減の実践論
delta_tech
4
150
Backlog ユーザー棚卸しRTA、多分これが一番早いと思います
__allllllllez__
1
140
2025-07-06 QGIS初級ハンズオン「はじめてのQGIS」
kou_kita
0
160
赤煉瓦倉庫勉強会「Databricksを選んだ理由と、絶賛真っ只中のデータ基盤移行体験記」
ivry_presentationmaterials
2
340
Connect 100+を支える技術
kanyamaguc
0
200
無意味な開発生産性の議論から抜け出すための予兆検知とお金とAI
i35_267
4
12k
Delta airlines Customer®️ USA Contact Numbers: Complete 2025 Support Guide
deltahelp
0
470
KubeCon + CloudNativeCon Japan 2025 Recap
ren510dev
1
370
Beyond Kaniko: Navigating Unprivileged Container Image Creation
f30
0
130
20250705 Headlamp: 專注可擴展性的 Kubernetes 用戶界面
pichuang
0
250
Featured
See All Featured
The World Runs on Bad Software
bkeepers
PRO
69
11k
[RailsConf 2023] Rails as a piece of cake
palkan
55
5.7k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
970
Writing Fast Ruby
sferik
628
62k
A Modern Web Designer's Workflow
chriscoyier
694
190k
Visualization
eitanlees
146
16k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.3k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
138
34k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
357
30k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
How to Think Like a Performance Engineer
csswizardry
25
1.7k
Transcript
坐标系统与坐标变换 FEX 刘家鸣
坐标系统概述 • 原点 • 互相垂直的两条数轴 • ⾓角度定义
数学上 X(0°) Y(90°) 45° 坐标系统概述
屏幕上 X(0°) Y(90°) 45° 坐标系统概述
视野与世界 • 世界是⽆无穷⼤大的 • 视野是观察世界的⼀一个矩形区域 • 坐标系在世界中
世界 视野
锤⼦子的故事
从前有⼀一个画家
他很擅⻓长画锤⼦子
有⼀一天他改⾏行当程序员
⽼老板说 “你用程序画一个锤子吧”
太简单了 x1 y1 h1 x2 y2 h2 w1 w2 X
Y
⽼老板⼜又说 “锤子往右挪100像素吧”
没问题 x1 y1 h1 x2 y2 h2 w1 w2 X
Y
没问题 x1 + 100 y1 h1 x2 + 100 y2
h2 w1 w2 X Y
? ? ?
⾃自⾝身坐标系和参考坐标系 • 为图形复合⽽而⽣生的机制 • 只在⾼高层绘图技术中⽀支持(如SVG、VML) • 定义 • 区别
定义 OC OB OA var a = new Rect(100, 50,
0, 0); var b = new Rect(20, 120, 40, 50); var c = new Group().addShapes([a, b]); ⾃自⾝身坐标系和参考坐标系
区别 OC OB OA ⾃自⾝身坐标系和参考坐标系 1. 产⽣生的场景不同 ⾃自⾝身坐标系:与⽣生俱来 参考坐标系:在从属关系中 2.
数量不同 ⾃自⾝身坐标系:有且仅有 1 个 参考坐标系:可以有 n 个 3. 使⽤用的⺫⽬目的不同 ⾃自⾝身坐标系:为了定义图形 参考坐标系:为了观察图形 Live Example
坐标变换 • 定义 • 线性变换 • 线性变换列表 • 前驱坐标系与图形的变换矩阵
定义 • 数学上,「坐标变换」 是采⽤用⼀一定的数学⽅方法 将⼀一个坐标系的坐标变 换为另⼀一个坐标系的坐 标的过程。 • 2D 绘图中,「坐标变
换」是对⼀一个坐标系到 另⼀一个坐标系的变换的 描述 坐标变换 OC OB OA
线性变换 坐标变换 • 线性变换公式 X’ = aX + cY +
e Y’ = bX + dY + f • 变换矩阵,记为 M a c e b d f 0 0 1 ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥
线性变换 • 线性变换公式 X’ = aX + cY + e
Y’ = bX + dY + f • 变换矩阵,记为 M OA OB 坐标变换 1 0 10 0 1 10 0 0 1 ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ a c e b d f 0 0 1 ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥
平移 OA OB 线性变换 1 0 10 0 1 10
0 0 1 ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥
旋转 OA 线性变换 • 使⽤用极坐标求变换矩阵 OB X = r ⋅cos(α)
Y = r isin(α) ⎧ ⎨ ⎩ 极坐标⽅方程: 旋转 θ 度后: X ' = r ⋅cos(α +θ) Y ' = r isin(α +θ) ⎧ ⎨ ⎩ 展开: X ' = r ⋅cos α ( )cos θ ( )− r ⋅sin α ( )sin θ ( )= cos θ ( )X − sin θ ( )Y + 0 Y ' = r ⋅cos α ( )sin θ ( )+ r ⋅sin α ( )cos θ ( )= sin θ ( )X + cos θ ( )Y + 0 ⎧ ⎨ ⎪ ⎩ ⎪
旋转 OA 线性变换 O B • 使⽤用极坐标求变换矩阵 cos(30°) −sin(30°) 0
sin(30°) cos(30°) 0 0 0 1 ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ X = r ⋅cos(α) Y = r isin(α) ⎧ ⎨ ⎩ 极坐标⽅方程: 旋转 θ 度后: X ' = r ⋅cos(α +θ) Y ' = r isin(α +θ) ⎧ ⎨ ⎩ 展开: X ' = r ⋅cos α ( )cos θ ( )− r ⋅sin α ( )sin θ ( )= cos θ ( )X − sin θ ( )Y + 0 Y ' = r ⋅cos α ( )sin θ ( )+ r ⋅sin α ( )cos θ ( )= sin θ ( )X + cos θ ( )Y + 0 ⎧ ⎨ ⎪ ⎩ ⎪
缩放 OA 线性变换 • a 和 c 直观控制缩放 OB
缩放 OA 线性变换 • a 和 c 直观控制缩放 OB 2
0 0 0 2 0 0 0 1 ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥
变换列表 OA 线性变换 • 表⽰示⼀一系列的变换,结 果为变换的矩阵的乘积 M = Mn ·
Mn-1 · ... · M2 · M1 · M0 • 后⾯面的变换乘在前⾯面 1 0 10 0 1 10 0 0 1 ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ i cos(30°) −sin(30°) 0 sin(30°) cos(30°) 0 0 0 1 ⎡ ⎣ ⎢ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ ⎥ Mtranslate · Mrotate O B
变换列表 OA 线性变换 • 表⽰示⼀一系列的变换,结 果为变换的矩阵的乘积 O B M =
Mn · Mn-1 · ... · M2 · M1 · M0 • 后⾯面的变换乘在前⾯面 O C Mtranslate · Mrotate Mrotate · Mtranslate • 顺序影响结果
前驱坐标系和图形的变换矩阵 线性变换 • 前驱坐标系:⽗父容器的坐标系 • 图形的变换矩阵M:⾃自⾝身坐标系到前驱坐标系的变换 • 变换的效果会叠加
前驱坐标系和图形的变换矩阵 线性变换 OB OA
前驱坐标系和图形的变换矩阵 线性变换 OB OA MA 1. 设置A的变换矩阵MA
OC 前驱坐标系和图形的变换矩阵 线性变换 OB OA MA 1. 设置A的变换矩阵MA 2. 把B放置在C中
前驱坐标系和图形的变换矩阵 线性变换 1. 设置A的变换矩阵MA 2. 把B放置在C中 3. 设置B的变换矩阵MB OC O
B O A M A MB 此时,OA 到OC 的变换为: MB·MA
Q&A