Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AWS ML@Loft #11 「BASE」類似商品APIの裏側
Search
bokeneko
March 24, 2020
Technology
0
640
AWS ML@Loft #11 「BASE」類似商品APIの裏側
ML@Loft #11で発表したスライド
https://ml-loft.connpass.com/event/169623/
bokeneko
March 24, 2020
Tweet
Share
More Decks by bokeneko
See All by bokeneko
Terraformを用いた機械学習インフラの構築 / Developers Summit 2018 FUKUOKA A-8
bokeneko
0
480
Retty Tech Night #1 bokeneko
bokeneko
1
810
TechPlay DeepLearningAllStars2017
bokeneko
0
1.5k
TFUG#3 RettyにおけるDeep Learningの自然言語処理への応用事例
bokeneko
18
16k
Other Decks in Technology
See All in Technology
DETR手法の変遷と最新動向(CVPR2025)
tenten0727
2
1.1k
TopAppBar Composableをカスタムする
hunachi
0
170
ゆるくVPC Latticeについてまとめてみたら、意外と奥深い件
masakiokuda
2
230
Webアプリを Lambdaで動かすまでに考えること / How to implement monolithic Lambda Web Application
_kensh
7
1.2k
ブラウザのレガシー・独自機能を愛でる-Firefoxの脆弱性4選- / Browser Crash Club #1
masatokinugawa
1
390
Tokyo dbt Meetup #13 dbtと連携するBI製品&機能ざっくり紹介
sagara
0
430
はてなの開発20年史と DevOpsの歩み / DevOpsDays Tokyo 2025 Keynote
daiksy
5
1.4k
Amazon S3 Tables + Amazon Athena / Apache Iceberg
okaru
0
240
Micro Frontends: Necessity, Implementation, and Challenges
rainerhahnekamp
2
350
”知のインストール”戦略:テキスト資産をAIの文脈理解に活かす
kworkdev
PRO
9
4.1k
自分の軸足を見つけろ
tsuemura
2
590
DuckDB MCPサーバーを使ってAWSコストを分析させてみた / AWS cost analysis with DuckDB MCP server
masahirokawahara
0
590
Featured
See All Featured
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.2k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
104
19k
Building Adaptive Systems
keathley
41
2.5k
VelocityConf: Rendering Performance Case Studies
addyosmani
328
24k
RailsConf 2023
tenderlove
30
1.1k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
13
660
Thoughts on Productivity
jonyablonski
69
4.6k
Visualization
eitanlees
146
16k
Measuring & Analyzing Core Web Vitals
bluesmoon
7
390
Building a Modern Day E-commerce SEO Strategy
aleyda
40
7.2k
The Invisible Side of Design
smashingmag
299
50k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.7k
Transcript
© - BASE, Inc. 「BASE」類似商品APIの裏側 © - BASE, Inc.
© - BASE, Inc. ⾃⼰紹介 ⽒原 淳志 BASE株式会社 / Data
Strategy Team • データ分析、機械学習などを担当するチームに所属 • TensorFlow出たくらいからDeep Learningに⼿を出 したりしてた • 今は機械学習で作成されたモデルを実運⽤するため のインフラ設計とかが中⼼ • クラフトビール好き。会社でビール部主催中
© - BASE, Inc. ネットショップ作成サービス「BASE」 出店ショップ数 (個⼈‧法⼈‧⾏政を含む) 90万ショップ以上 BASEかんたん決済利⽤料 3.6%+40円
サービス利⽤料 % コンセプト 「誰でも簡単に使えるネットショップ作成サービス」 初期費⽤‧⽉額費⽤ 0円 ショップオーナーのサポート機能が充実! 個⼈でも決済機能をかんたん導⼊。 審査もスピーディー! クレジットカード 銀⾏振込 コンビニ決済‧Pay-easy 後払い (BASE Apps) キャリア決済
© - BASE, Inc. 関連商品 • BASEアプリで商品詳細ページの下 部にある • 表⽰中の商品に類似した商品が並ん
でいる • DSチームが提供している類似商品 APIで候補を選んでいる
© - BASE, Inc. アジェンダ • 類似商品APIの仕組み • 類似商品APIのインフラ‧運⽤
© - BASE, Inc. 類似商品APIの仕組み
© - BASE, Inc. 類似商品APIの仕組み • 画像、テキストの特徴量の近さを商品の類似度に採⽤ • 画像の特徴量 •
MobileNet • テキストの特徴量 • 以前はfastTextのdoc vector → 現在はfastText & SCDVに移⾏ • 近傍探索 • 以前はNGT → 現在はfaissに移⾏
© - BASE, Inc. MobileNet • Kerasにおいて(というか⼤抵のフレーム ワークで)ImageNetでの事前学習済みのモ デルが提供されている •
include_top=Falseで全結合層なしで使えば 1024次元の特徴量抽出モデルとして使える
© - BASE, Inc. fastText, SCDV • fastTextはFacebookがOSSで開発している単語の分散表現学習など できるツール。doc vectorも計算可(ただのword
vectorの平均っぽ い) • https://github.com/facebookresearch/fastText • SCDVはdoc vectorを計算するための⼿法 • https://dheeraj .github.io/SDV/ • この辺がくわしい • https://qiita.com/fufufukakaka/items/a a c
© - BASE, Inc. NGT • Yahoo! JAPANがOSSで開発している⾼次元 vectorの近傍探索ツール •
https://github.com/yahoojapan/NGT • 数百万個の1024次元ベクトルから数⼗msく らいで近傍を取ってこれる • (でもくっそメモリ⾷う)
© - BASE, Inc. faiss • FacebookがOSSで開発している⾼次元ベクトルの近傍探 索ツール • https://github.com/facebookresearch/faiss
• NGTと⽐べると • 圧縮のための仕組みとかが⽤意されていて便利 • 圧縮⼿法によっては事前の学習が必要 • 圧縮フル活⽤したらNGTに⽐べて必要なメモリを1/100 くらいまで減らせる • ドキュメントが充実してる(⼤事)
© - BASE, Inc. 関連商品APIのインフラ‧運⽤
© - BASE, Inc. 類似商品APIの運⽤ • 画像の特徴量は事前計算、テキストはオン デマンド • モデルの更新はdaily
• ECSを利⽤したマイクロサービスの組み合わ せでAPIを提供
© - BASE, Inc. 事前計算 DS AWS SNS SQS ECS
SageMaker 新規画像登録通知 特徴量計算 対象画像取得 特徴量の保存 S S
© - BASE, Inc. モデルの更新 DS AWS ECS Task Step
Functions faiss indexの作成 ECS 特徴量index Lambda 対象商品の取得 特徴量の取得 faiss indexの保存 ECSの再起動 Cloud Watch Rule RDS S
© - BASE, Inc. APIの提供 DS AWS ECS API Proxy
ECS 類似画像商品API ALB Internal ALB ECS 画像特徴量index ECS 類似テキスト商品API ECS テキスト特徴量index
© - BASE, Inc. Future Work • 今はファッションとそれ以外で画像とテキ ストの特徴量を使い分けているが、画像‧ テキストの特徴量を同時に扱う汎⽤的な商
品特徴量モデルを作成中 • この商品特徴量を類似商品以外にも⾃動カ テゴリ分類とかに利⽤したい
© - BASE, Inc. ご清聴ありがとうございました