Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AWS ML@Loft #11 「BASE」類似商品APIの裏側
Search
bokeneko
March 24, 2020
Technology
0
650
AWS ML@Loft #11 「BASE」類似商品APIの裏側
ML@Loft #11で発表したスライド
https://ml-loft.connpass.com/event/169623/
bokeneko
March 24, 2020
Tweet
Share
More Decks by bokeneko
See All by bokeneko
Terraformを用いた機械学習インフラの構築 / Developers Summit 2018 FUKUOKA A-8
bokeneko
0
510
Retty Tech Night #1 bokeneko
bokeneko
1
830
TechPlay DeepLearningAllStars2017
bokeneko
0
1.5k
TFUG#3 RettyにおけるDeep Learningの自然言語処理への応用事例
bokeneko
18
16k
Other Decks in Technology
See All in Technology
Enhancing SaaS Product Reliability and Release Velocity through Optimized Testing Approach
ropqa
1
260
公開初日に Gemini CLI を試した話や FFmpeg と組み合わせてみた話など / Gemini CLI 初学者勉強会(#AI道場)
you
PRO
0
1.1k
AWS 怖い話 WAF編 @fillz_noh #AWSStartup #AWSStartup_Kansai
fillznoh
0
110
20250708オープンエンドな探索と知識発見
sakana_ai
PRO
4
960
AIでテストプロセス自動化に挑戦する
sakatakazunori
1
210
推し書籍📚 / Books and a QA Engineer
ak1210
0
120
microCMSではじめるAIライティング
himaratsu
0
130
【Oracle Cloud ウェビナー】【入門&再入門】はじめてのOracle Cloud Infrastructure [+最新情報]
oracle4engineer
PRO
1
110
Lakebaseを使ったAIエージェントを実装してみる
kameitomohiro
0
190
オーティファイ会社紹介資料 / Autify Company Deck
autifyhq
10
130k
Figma Dev Mode MCP Serverを用いたUI開発
zoothezoo
0
120
事例で学ぶ!B2B SaaSにおけるSREの実践例/SRE for B2B SaaS: A Real-World Case Study
bitkey
1
370
Featured
See All Featured
Reflections from 52 weeks, 52 projects
jeffersonlam
351
21k
Docker and Python
trallard
45
3.5k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.5k
Optimising Largest Contentful Paint
csswizardry
37
3.3k
Agile that works and the tools we love
rasmusluckow
329
21k
Rails Girls Zürich Keynote
gr2m
95
14k
Being A Developer After 40
akosma
90
590k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
108
19k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.5k
Gamification - CAS2011
davidbonilla
81
5.4k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
21
1.3k
Transcript
© - BASE, Inc. 「BASE」類似商品APIの裏側 © - BASE, Inc.
© - BASE, Inc. ⾃⼰紹介 ⽒原 淳志 BASE株式会社 / Data
Strategy Team • データ分析、機械学習などを担当するチームに所属 • TensorFlow出たくらいからDeep Learningに⼿を出 したりしてた • 今は機械学習で作成されたモデルを実運⽤するため のインフラ設計とかが中⼼ • クラフトビール好き。会社でビール部主催中
© - BASE, Inc. ネットショップ作成サービス「BASE」 出店ショップ数 (個⼈‧法⼈‧⾏政を含む) 90万ショップ以上 BASEかんたん決済利⽤料 3.6%+40円
サービス利⽤料 % コンセプト 「誰でも簡単に使えるネットショップ作成サービス」 初期費⽤‧⽉額費⽤ 0円 ショップオーナーのサポート機能が充実! 個⼈でも決済機能をかんたん導⼊。 審査もスピーディー! クレジットカード 銀⾏振込 コンビニ決済‧Pay-easy 後払い (BASE Apps) キャリア決済
© - BASE, Inc. 関連商品 • BASEアプリで商品詳細ページの下 部にある • 表⽰中の商品に類似した商品が並ん
でいる • DSチームが提供している類似商品 APIで候補を選んでいる
© - BASE, Inc. アジェンダ • 類似商品APIの仕組み • 類似商品APIのインフラ‧運⽤
© - BASE, Inc. 類似商品APIの仕組み
© - BASE, Inc. 類似商品APIの仕組み • 画像、テキストの特徴量の近さを商品の類似度に採⽤ • 画像の特徴量 •
MobileNet • テキストの特徴量 • 以前はfastTextのdoc vector → 現在はfastText & SCDVに移⾏ • 近傍探索 • 以前はNGT → 現在はfaissに移⾏
© - BASE, Inc. MobileNet • Kerasにおいて(というか⼤抵のフレーム ワークで)ImageNetでの事前学習済みのモ デルが提供されている •
include_top=Falseで全結合層なしで使えば 1024次元の特徴量抽出モデルとして使える
© - BASE, Inc. fastText, SCDV • fastTextはFacebookがOSSで開発している単語の分散表現学習など できるツール。doc vectorも計算可(ただのword
vectorの平均っぽ い) • https://github.com/facebookresearch/fastText • SCDVはdoc vectorを計算するための⼿法 • https://dheeraj .github.io/SDV/ • この辺がくわしい • https://qiita.com/fufufukakaka/items/a a c
© - BASE, Inc. NGT • Yahoo! JAPANがOSSで開発している⾼次元 vectorの近傍探索ツール •
https://github.com/yahoojapan/NGT • 数百万個の1024次元ベクトルから数⼗msく らいで近傍を取ってこれる • (でもくっそメモリ⾷う)
© - BASE, Inc. faiss • FacebookがOSSで開発している⾼次元ベクトルの近傍探 索ツール • https://github.com/facebookresearch/faiss
• NGTと⽐べると • 圧縮のための仕組みとかが⽤意されていて便利 • 圧縮⼿法によっては事前の学習が必要 • 圧縮フル活⽤したらNGTに⽐べて必要なメモリを1/100 くらいまで減らせる • ドキュメントが充実してる(⼤事)
© - BASE, Inc. 関連商品APIのインフラ‧運⽤
© - BASE, Inc. 類似商品APIの運⽤ • 画像の特徴量は事前計算、テキストはオン デマンド • モデルの更新はdaily
• ECSを利⽤したマイクロサービスの組み合わ せでAPIを提供
© - BASE, Inc. 事前計算 DS AWS SNS SQS ECS
SageMaker 新規画像登録通知 特徴量計算 対象画像取得 特徴量の保存 S S
© - BASE, Inc. モデルの更新 DS AWS ECS Task Step
Functions faiss indexの作成 ECS 特徴量index Lambda 対象商品の取得 特徴量の取得 faiss indexの保存 ECSの再起動 Cloud Watch Rule RDS S
© - BASE, Inc. APIの提供 DS AWS ECS API Proxy
ECS 類似画像商品API ALB Internal ALB ECS 画像特徴量index ECS 類似テキスト商品API ECS テキスト特徴量index
© - BASE, Inc. Future Work • 今はファッションとそれ以外で画像とテキ ストの特徴量を使い分けているが、画像‧ テキストの特徴量を同時に扱う汎⽤的な商
品特徴量モデルを作成中 • この商品特徴量を類似商品以外にも⾃動カ テゴリ分類とかに利⽤したい
© - BASE, Inc. ご清聴ありがとうございました