Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The things I've seen, living with MongoDB
Search
Bradley Whittington
October 03, 2013
Technology
0
120
The things I've seen, living with MongoDB
A short talk through some of the lessons learned about MongoDB at Motribe and Mxit
Bradley Whittington
October 03, 2013
Tweet
Share
More Decks by Bradley Whittington
See All by Bradley Whittington
Black Friday 2017 talk at Cape Town DevOps meetup
bradwhittington
0
29
Let's talk about Git
bradwhittington
0
64
Doing something new in an existing company culture
bradwhittington
0
120
Load Balancing 101
bradwhittington
1
470
Agile-ish is good enough
bradwhittington
1
490
PHP Addiction - or, teach someone about python
bradwhittington
2
620
Quick overview of MongoDB
bradwhittington
0
91
Other Decks in Technology
See All in Technology
『AWS Distinguished Engineerに学ぶ リトライの技術』 #ARC403/Marc Brooker on Try again: The tools and techniques behind resilient systems
quiver
0
140
『衛星データ利用の方々にとって近いようで触れる機会のなさそうな小話 ~ 衛星搭載ソフトウェアと衛星運用ソフトウェア (実物) を動かしながらわいわいする編 ~』 @日本衛星データコミニティ勉強会
meltingrabbit
0
140
AndroidXR 開発ツールごとの できることできないこと
donabe3
0
120
5分で紹介する生成AIエージェントとAmazon Bedrock Agents / 5-minutes introduction to generative AI agents and Amazon Bedrock Agents
hideakiaoyagi
0
230
Data-centric AI入門第6章:Data-centric AIの実践例
x_ttyszk
1
390
Datadog APM におけるトレース収集の流れ及び Retention Filters のはなし / datadog-apm-trace-retention-filters
k6s4i53rx
0
330
10分で紹介するAmazon Bedrock利用時のセキュリティ対策 / 10-minutes introduction to security measures when using Amazon Bedrock
hideakiaoyagi
0
180
ハッキングの世界に迫る~攻撃者の思考で考えるセキュリティ~
nomizone
13
5k
組織貢献をするフリーランスエンジニアという生き方
n_takehata
1
1.2k
技術負債の「予兆検知」と「状況異変」のススメ / Technology Dept
i35_267
1
1k
Nekko Cloud、 これまでとこれから ~学生サークルが作る、 小さなクラウド
logica0419
2
880
エンジニアの育成を支える爆速フィードバック文化
sansantech
PRO
3
990
Featured
See All Featured
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Designing for humans not robots
tammielis
250
25k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
Testing 201, or: Great Expectations
jmmastey
42
7.2k
Code Review Best Practice
trishagee
66
17k
Building Adaptive Systems
keathley
40
2.4k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
27
1.5k
Optimizing for Happiness
mojombo
376
70k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.3k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
9
430
Making Projects Easy
brettharned
116
6k
Transcript
The things I’ve seen, living with MongoDB Brad Whittington VP
web products - Mxit
What we use MongoDB for Primary data store for a
few consumer products. Motribe mobile social network - JudgeME & MxPix Mxit Launch
JudgeMe
None
Polytechnical university of hardknocks 1 week into my new job…
Zero MongoDB experience Massive crashes and timeouts on our cluster Hundreds of requests per minute
MongoDB docs == MongoDB + EC2 =
db.serverStatus() rs.add(...) MMS
MongoSQL? Mongo is *not* a relational database This is bad:
{ _id:... friend_id:... user_id:... }
The Data is Hot If you can’t fit all your
data in RAM, make sure you are kind to your (network connected) hard drives. Reads from (networked) disks are (incredibly) slow.
sort by rand() limit 1 MongoDB is all… One Solution!
(see the help pages for more) Add random geospatial positions Geospatial indexing Query for objects near [x,y] Disks are all like
I wish we had Capped Arrays*... Database with Capped Collections.Totally
okay. For the first n00 000 collections. Then it’s a bad idea. A very bad idea. * Available in MongoDB 2.4
A fresh start. Mxit Launch Platform for app creation Aim
for ±single document per request Cache cleverly, aggressively Database per app 300 authors 9M pageviews/month 2M unique users 4 m1.small 1 amazon core, 1.7GB ram
A fresh lesson Doing ensureIndex(..., {background:true}) inline in the request
is sub-optimal. 60 indexing processes 3M document collection (not fully in RAM) Not ideal.
db.currentOp() db.killOp() db.repair() db.currentOp().inprog.forEach( function(d){ if(d.waitingForLock && d.lockType != "read")
printjson(d) })
MongoDB Love • Mongo terminal is JS • Recovery is
quick, easy • Sharding is easy • Indexes are lovely • Be careful in your architecture / queries. Pure index queries are ++ • MongoDB is not a Relational DB
Read http://aphyr.com/tags/jepsen Aphyr / Jepsen / Call me maybe
@darb github.com/bradwhittington speakerdeck.com/u/bradwhittington/ Questions?