Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
What an ML-ful World! MLKit for Android dev.
Search
Britt Barak
October 12, 2018
Programming
0
140
What an ML-ful World! MLKit for Android dev.
Britt Barak
October 12, 2018
Tweet
Share
More Decks by Britt Barak
See All by Britt Barak
[Vonage] Introducing Conversations
brittbarak
1
130
Kids, Play Nice! Kotlin-Java Interop In Mind
brittbarak
2
450
Sharing is Caring- Getting Started with Kotlin Multiplatform
brittbarak
2
2.1k
Between JOMO and FOMO: You are reshaping communication.
brittbarak
2
1.3k
Build Apps For The Ones You Love
brittbarak
1
130
Make your app dance with MotionLayout
brittbarak
8
1.4k
Who's afraid of ML? V2 : First steps with MlKit
brittbarak
1
460
Oh, the places you'll go! Cracking Navigation on Android
brittbarak
0
490
The organic evolution - how and why we created peer mentorship program
brittbarak
0
59
Other Decks in Programming
See All in Programming
AIコードレビューがチームの"文脈"を 読めるようになるまで
marutaku
0
310
AIコーディングエージェント(NotebookLM)
kondai24
0
120
ソフトウェア設計の課題・原則・実践技法
masuda220
PRO
24
21k
レイトレZ世代に捧ぐ、今からレイトレを始めるための小径
ichi_raven
0
490
「コードは上から下へ読むのが一番」と思った時に、思い出してほしい話
panda728
PRO
1
1.6k
配送計画の均等化機能を提供する取り組みについて(⽩⾦鉱業 Meetup Vol.21@六本⽊(数理最適化編))
izu_nori
0
120
【Streamlit x Snowflake】データ基盤からアプリ開発・AI活用まで、すべてをSnowflake内で実現
ayumu_yamaguchi
1
110
著者と進める!『AIと個人開発したくなったらまずCursorで要件定義だ!』
yasunacoffee
0
110
S3 VectorsとStrands Agentsを利用したAgentic RAGシステムの構築
tosuri13
5
270
Reactive Thinking with Signals and the new Resource API
manfredsteyer
PRO
0
160
関数の挙動書き換える
takatofukui
4
770
非同期処理の迷宮を抜ける: 初学者がつまづく構造的な原因
pd1xx
1
570
Featured
See All Featured
A designer walks into a library…
pauljervisheath
210
24k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
54k
Thoughts on Productivity
jonyablonski
73
5k
Making the Leap to Tech Lead
cromwellryan
135
9.6k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
31
2.7k
Documentation Writing (for coders)
carmenintech
76
5.2k
Visualization
eitanlees
150
16k
The Pragmatic Product Professional
lauravandoore
37
7.1k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Docker and Python
trallard
46
3.7k
Transcript
What an ML-ful world Britt Barak
Once upon a time @BrittBarak
beta @BrittBarak
ML Capability ?! @BrittBarak
Who is afraid of Machine Learning? & First Steps With
ML-Kit @BrittBarak
Britt Barak Developer Experience, Nexmo Google Developer Expert Britt Barak
@brittBarak
None
@BrittBarak
= @BrittBarak
§ What’s the difference? @BrittBarak
…and classify? @BrittBarak
@BrittBarak
This is a strawberry @BrittBarak
This is a strawberry Red Seeds pattern Narrow top leaves
@BrittBarak Pointy at the bottom Round at the top
Strawberry Not Not Not Strawberry Strawberry Not Not Not @BrittBarak
~*~ images ~*~ @BrittBarak
@BrittBarak Vision library
Text Recognition @BrittBarak
Face Detection @BrittBarak
Barcode Scanning @BrittBarak
Image Labelling @BrittBarak
Landmark Recognition @BrittBarak
Custom Models @BrittBarak
Example @BrittBarak
@BrittBarak
@BrittBarak
Detector detector .execute(image) Result: @BrittBarak “Ben & Jerry’s pistachio ice
cream”
1. Setup Detector @BrittBarak
Local or cloud? @BrittBarak
@BrittBarak
Local •Realtime •Offline support •Security / Privacy •Bandwith •… @BrittBarak
Cloud •More accuracy & features •But more latency •Pricing @BrittBarak
1. Setup Detector @BrittBarak
Text Detector textDetector = FirebaseVision.getInstance() @BrittBarak
Text Detector textDetector = FirebaseVision.getInstance() .onDeviceTextRecognizer @BrittBarak
Text Detector textDetector = FirebaseVision.getInstance() .cloudTextRecognizer @BrittBarak
2. Process input @BrittBarak
FirebaseVisionImage •Bitmap •image Uri •Media Image •byteArray •byteBuffer @BrittBarak
image = FirebaseVisionImage.fromBitmap(bitmap) @BrittBarak Text Detector
3. Execute the model @BrittBarak
Text Detector textDetector.processImage(image) @BrittBarak
Text Detector textDetector.processImage(image) .addOnSuccessListener { } @BrittBarak
Text Detector textDetector.processImage(image) .addOnSuccessListener { firebaseVisionTexts -> processOutput(fbVisionTexts) } @BrittBarak
4. Process output @BrittBarak
firebaseVisionTexts.text @BrittBarak
someTextView.text = firebaseVisionTexts.text @BrittBarak UI
Result @BrittBarak
Result @BrittBarak
(another) Example : Labelling @BrittBarak
Detector detector .execute(image) Result: @BrittBarak ice cream pint
Vegetables Deserts Vegetables
1. Setup Detector @BrittBarak
Image Classifier imageDetector = FirebaseVision.getInstance() @BrittBarak
Image Classifier imageDetector = FirebaseVision.getInstance() .visionLabelDetector @BrittBarak
Image Classifier imageDetector = FirebaseVision.getInstance .visionCloudLabelDetector @BrittBarak
2. Process input @BrittBarak
image = FirebaseVisionImage.fromBitmap(bitmap) @BrittBarak Image Classifier
3. Execute the model @BrittBarak
Image Classifier imageDetector.detectInImage(image) @BrittBarak
Image Classifier imageDetector.detectInImage(image) .addOnSuccessListener{ } @BrittBarak
Image Classifier imageDetector.detectInImage(image) .addOnSuccessListener{ fBLabels -> processOutput(fBLabels) } @BrittBarak
4. Process output @BrittBarak
fbLabel.label fbLabel.confidence fbLabel.entityId @BrittBarak
UI for (fbLabel in labels) { s = "${fbLabel.label} :
${fbLabel.confidence}" } @BrittBarak
Result
Result
It is an ML-ful world Enjoy!
Thank you! Keep in touch!