Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
What an ML-ful World! MLKit for Android dev.
Search
Britt Barak
October 12, 2018
Programming
0
130
What an ML-ful World! MLKit for Android dev.
Britt Barak
October 12, 2018
Tweet
Share
More Decks by Britt Barak
See All by Britt Barak
[Vonage] Introducing Conversations
brittbarak
1
120
Kids, Play Nice! Kotlin-Java Interop In Mind
brittbarak
2
440
Sharing is Caring- Getting Started with Kotlin Multiplatform
brittbarak
2
2k
Between JOMO and FOMO: You are reshaping communication.
brittbarak
2
1.2k
Build Apps For The Ones You Love
brittbarak
1
120
Make your app dance with MotionLayout
brittbarak
8
1.4k
Who's afraid of ML? V2 : First steps with MlKit
brittbarak
1
450
Oh, the places you'll go! Cracking Navigation on Android
brittbarak
0
480
The organic evolution - how and why we created peer mentorship program
brittbarak
0
54
Other Decks in Programming
See All in Programming
AI Ramen Fight
yusukebe
0
130
Claude Code と OpenAI o3 で メタデータ情報を作る
laket
0
110
Reactの歴史を振り返る
tutinoko
1
170
管你要 trace 什麼、bpftrace 用下去就對了 — COSCUP 2025
shunghsiyu
0
180
Constant integer division faster than compiler-generated code
herumi
1
110
副作用と戦う PHP リファクタリング ─ ドメインイベントでビジネスロジックを解きほぐす
kajitack
3
520
11年かかって やっとVibe Codingに 時代が追いつきましたね
yimajo
1
240
JetBrainsのAI機能の紹介 #jjug
yusuke
0
180
ZeroETLで始めるDynamoDBとS3の連携
afooooil
0
150
令和最新版手のひらコンピュータ
koba789
2
600
商品比較サービス「マイベスト」における パーソナライズレコメンドの第一歩
ucchiii43
0
270
Vibe coding コードレビュー
kinopeee
0
410
Featured
See All Featured
Large-scale JavaScript Application Architecture
addyosmani
512
110k
For a Future-Friendly Web
brad_frost
179
9.9k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Producing Creativity
orderedlist
PRO
346
40k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.6k
Unsuck your backbone
ammeep
671
58k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Side Projects
sachag
455
43k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.3k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
Transcript
What an ML-ful world Britt Barak
Once upon a time @BrittBarak
beta @BrittBarak
ML Capability ?! @BrittBarak
Who is afraid of Machine Learning? & First Steps With
ML-Kit @BrittBarak
Britt Barak Developer Experience, Nexmo Google Developer Expert Britt Barak
@brittBarak
None
@BrittBarak
= @BrittBarak
§ What’s the difference? @BrittBarak
…and classify? @BrittBarak
@BrittBarak
This is a strawberry @BrittBarak
This is a strawberry Red Seeds pattern Narrow top leaves
@BrittBarak Pointy at the bottom Round at the top
Strawberry Not Not Not Strawberry Strawberry Not Not Not @BrittBarak
~*~ images ~*~ @BrittBarak
@BrittBarak Vision library
Text Recognition @BrittBarak
Face Detection @BrittBarak
Barcode Scanning @BrittBarak
Image Labelling @BrittBarak
Landmark Recognition @BrittBarak
Custom Models @BrittBarak
Example @BrittBarak
@BrittBarak
@BrittBarak
Detector detector .execute(image) Result: @BrittBarak “Ben & Jerry’s pistachio ice
cream”
1. Setup Detector @BrittBarak
Local or cloud? @BrittBarak
@BrittBarak
Local •Realtime •Offline support •Security / Privacy •Bandwith •… @BrittBarak
Cloud •More accuracy & features •But more latency •Pricing @BrittBarak
1. Setup Detector @BrittBarak
Text Detector textDetector = FirebaseVision.getInstance() @BrittBarak
Text Detector textDetector = FirebaseVision.getInstance() .onDeviceTextRecognizer @BrittBarak
Text Detector textDetector = FirebaseVision.getInstance() .cloudTextRecognizer @BrittBarak
2. Process input @BrittBarak
FirebaseVisionImage •Bitmap •image Uri •Media Image •byteArray •byteBuffer @BrittBarak
image = FirebaseVisionImage.fromBitmap(bitmap) @BrittBarak Text Detector
3. Execute the model @BrittBarak
Text Detector textDetector.processImage(image) @BrittBarak
Text Detector textDetector.processImage(image) .addOnSuccessListener { } @BrittBarak
Text Detector textDetector.processImage(image) .addOnSuccessListener { firebaseVisionTexts -> processOutput(fbVisionTexts) } @BrittBarak
4. Process output @BrittBarak
firebaseVisionTexts.text @BrittBarak
someTextView.text = firebaseVisionTexts.text @BrittBarak UI
Result @BrittBarak
Result @BrittBarak
(another) Example : Labelling @BrittBarak
Detector detector .execute(image) Result: @BrittBarak ice cream pint
Vegetables Deserts Vegetables
1. Setup Detector @BrittBarak
Image Classifier imageDetector = FirebaseVision.getInstance() @BrittBarak
Image Classifier imageDetector = FirebaseVision.getInstance() .visionLabelDetector @BrittBarak
Image Classifier imageDetector = FirebaseVision.getInstance .visionCloudLabelDetector @BrittBarak
2. Process input @BrittBarak
image = FirebaseVisionImage.fromBitmap(bitmap) @BrittBarak Image Classifier
3. Execute the model @BrittBarak
Image Classifier imageDetector.detectInImage(image) @BrittBarak
Image Classifier imageDetector.detectInImage(image) .addOnSuccessListener{ } @BrittBarak
Image Classifier imageDetector.detectInImage(image) .addOnSuccessListener{ fBLabels -> processOutput(fBLabels) } @BrittBarak
4. Process output @BrittBarak
fbLabel.label fbLabel.confidence fbLabel.entityId @BrittBarak
UI for (fbLabel in labels) { s = "${fbLabel.label} :
${fbLabel.confidence}" } @BrittBarak
Result
Result
It is an ML-ful world Enjoy!
Thank you! Keep in touch!