Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
What an ML-ful World! MLKit for Android dev.
Search
Britt Barak
October 12, 2018
Programming
0
130
What an ML-ful World! MLKit for Android dev.
Britt Barak
October 12, 2018
Tweet
Share
More Decks by Britt Barak
See All by Britt Barak
[Vonage] Introducing Conversations
brittbarak
1
120
Kids, Play Nice! Kotlin-Java Interop In Mind
brittbarak
2
360
Sharing is Caring- Getting Started with Kotlin Multiplatform
brittbarak
2
1.9k
Between JOMO and FOMO: You are reshaping communication.
brittbarak
2
1.2k
Build Apps For The Ones You Love
brittbarak
1
110
Make your app dance with MotionLayout
brittbarak
8
1.3k
Who's afraid of ML? V2 : First steps with MlKit
brittbarak
1
450
Oh, the places you'll go! Cracking Navigation on Android
brittbarak
0
460
The organic evolution - how and why we created peer mentorship program
brittbarak
0
51
Other Decks in Programming
See All in Programming
What’s New in Compose Multiplatform - A Live Tour (droidcon London 2024)
zsmb
1
480
Duckdb-Wasmでローカルダッシュボードを作ってみた
nkforwork
0
130
광고 소재 심사 과정에 AI를 도입하여 광고 서비스 생산성 향상시키기
kakao
PRO
0
170
3 Effective Rules for Using Signals in Angular
manfredsteyer
PRO
1
100
カンファレンスの「アレ」Webでなんとかしませんか? / Conference “thing” Why don't you do something about it on the Web?
dero1to
1
110
ローコードSaaSのUXを向上させるためのTypeScript
taro28
1
630
3 Effective Rules for Using Signals in Angular
manfredsteyer
PRO
0
120
Functional Event Sourcing using Sekiban
tomohisa
0
100
アジャイルを支えるテストアーキテクチャ設計/Test Architecting for Agile
goyoki
9
3.3k
ECS Service Connectのこれまでのアップデートと今後のRoadmapを見てみる
tkikuc
2
260
「今のプロジェクトいろいろ大変なんですよ、app/services とかもあって……」/After Kaigi on Rails 2024 LT Night
junk0612
5
2.2k
聞き手から登壇者へ: RubyKaigi2024 LTでの初挑戦が 教えてくれた、可能性の星
mikik0
1
130
Featured
See All Featured
Happy Clients
brianwarren
98
6.7k
Mobile First: as difficult as doing things right
swwweet
222
8.9k
Designing for humans not robots
tammielis
250
25k
Side Projects
sachag
452
42k
Imperfection Machines: The Place of Print at Facebook
scottboms
265
13k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
25
1.8k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
109
49k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
6.8k
Into the Great Unknown - MozCon
thekraken
32
1.5k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
28
2k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
4
380
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
Transcript
What an ML-ful world Britt Barak
Once upon a time @BrittBarak
beta @BrittBarak
ML Capability ?! @BrittBarak
Who is afraid of Machine Learning? & First Steps With
ML-Kit @BrittBarak
Britt Barak Developer Experience, Nexmo Google Developer Expert Britt Barak
@brittBarak
None
@BrittBarak
= @BrittBarak
§ What’s the difference? @BrittBarak
…and classify? @BrittBarak
@BrittBarak
This is a strawberry @BrittBarak
This is a strawberry Red Seeds pattern Narrow top leaves
@BrittBarak Pointy at the bottom Round at the top
Strawberry Not Not Not Strawberry Strawberry Not Not Not @BrittBarak
~*~ images ~*~ @BrittBarak
@BrittBarak Vision library
Text Recognition @BrittBarak
Face Detection @BrittBarak
Barcode Scanning @BrittBarak
Image Labelling @BrittBarak
Landmark Recognition @BrittBarak
Custom Models @BrittBarak
Example @BrittBarak
@BrittBarak
@BrittBarak
Detector detector .execute(image) Result: @BrittBarak “Ben & Jerry’s pistachio ice
cream”
1. Setup Detector @BrittBarak
Local or cloud? @BrittBarak
@BrittBarak
Local •Realtime •Offline support •Security / Privacy •Bandwith •… @BrittBarak
Cloud •More accuracy & features •But more latency •Pricing @BrittBarak
1. Setup Detector @BrittBarak
Text Detector textDetector = FirebaseVision.getInstance() @BrittBarak
Text Detector textDetector = FirebaseVision.getInstance() .onDeviceTextRecognizer @BrittBarak
Text Detector textDetector = FirebaseVision.getInstance() .cloudTextRecognizer @BrittBarak
2. Process input @BrittBarak
FirebaseVisionImage •Bitmap •image Uri •Media Image •byteArray •byteBuffer @BrittBarak
image = FirebaseVisionImage.fromBitmap(bitmap) @BrittBarak Text Detector
3. Execute the model @BrittBarak
Text Detector textDetector.processImage(image) @BrittBarak
Text Detector textDetector.processImage(image) .addOnSuccessListener { } @BrittBarak
Text Detector textDetector.processImage(image) .addOnSuccessListener { firebaseVisionTexts -> processOutput(fbVisionTexts) } @BrittBarak
4. Process output @BrittBarak
firebaseVisionTexts.text @BrittBarak
someTextView.text = firebaseVisionTexts.text @BrittBarak UI
Result @BrittBarak
Result @BrittBarak
(another) Example : Labelling @BrittBarak
Detector detector .execute(image) Result: @BrittBarak ice cream pint
Vegetables Deserts Vegetables
1. Setup Detector @BrittBarak
Image Classifier imageDetector = FirebaseVision.getInstance() @BrittBarak
Image Classifier imageDetector = FirebaseVision.getInstance() .visionLabelDetector @BrittBarak
Image Classifier imageDetector = FirebaseVision.getInstance .visionCloudLabelDetector @BrittBarak
2. Process input @BrittBarak
image = FirebaseVisionImage.fromBitmap(bitmap) @BrittBarak Image Classifier
3. Execute the model @BrittBarak
Image Classifier imageDetector.detectInImage(image) @BrittBarak
Image Classifier imageDetector.detectInImage(image) .addOnSuccessListener{ } @BrittBarak
Image Classifier imageDetector.detectInImage(image) .addOnSuccessListener{ fBLabels -> processOutput(fBLabels) } @BrittBarak
4. Process output @BrittBarak
fbLabel.label fbLabel.confidence fbLabel.entityId @BrittBarak
UI for (fbLabel in labels) { s = "${fbLabel.label} :
${fbLabel.confidence}" } @BrittBarak
Result
Result
It is an ML-ful world Enjoy!
Thank you! Keep in touch!