Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
What an ML-ful World! MLKit for Android dev.
Search
Britt Barak
October 12, 2018
Programming
0
130
What an ML-ful World! MLKit for Android dev.
Britt Barak
October 12, 2018
Tweet
Share
More Decks by Britt Barak
See All by Britt Barak
[Vonage] Introducing Conversations
brittbarak
1
130
Kids, Play Nice! Kotlin-Java Interop In Mind
brittbarak
2
450
Sharing is Caring- Getting Started with Kotlin Multiplatform
brittbarak
2
2.1k
Between JOMO and FOMO: You are reshaping communication.
brittbarak
2
1.3k
Build Apps For The Ones You Love
brittbarak
1
120
Make your app dance with MotionLayout
brittbarak
8
1.4k
Who's afraid of ML? V2 : First steps with MlKit
brittbarak
1
460
Oh, the places you'll go! Cracking Navigation on Android
brittbarak
0
480
The organic evolution - how and why we created peer mentorship program
brittbarak
0
56
Other Decks in Programming
See All in Programming
マンガアプリViewerの大画面対応を考える
kk__777
0
440
Reactive Thinking with Signals and the Resource API
manfredsteyer
PRO
0
120
フロントエンド開発のためのブラウザ組み込みAI入門
masashi
7
3.7k
TransformerからMCPまで(現代AIを理解するための羅針盤)
mickey_kubo
7
5.9k
Vue 3.6 時代のリアクティビティ最前線 〜Vapor/alien-signals の実践とパフォーマンス最適化〜
hiranuma
2
350
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
130
実践Claude Code:20の失敗から学ぶAIペアプログラミング
takedatakashi
18
9.3k
data-viz-talk-cz-2025
lcolladotor
0
110
モテるデスク環境
mozumasu
3
1.4k
釣り地図SNSにおける有料機能の実装
nokonoko1203
0
200
SwiftDataを使って10万件のデータを読み書きする
akidon0000
0
250
When Dependencies Fail: Building Antifragile Applications in a Fragile World
selcukusta
0
120
Featured
See All Featured
Embracing the Ebb and Flow
colly
88
4.9k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
Java REST API Framework Comparison - PWX 2021
mraible
34
8.9k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.3k
BBQ
matthewcrist
89
9.9k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
How GitHub (no longer) Works
holman
315
140k
Bash Introduction
62gerente
615
210k
For a Future-Friendly Web
brad_frost
180
10k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Transcript
What an ML-ful world Britt Barak
Once upon a time @BrittBarak
beta @BrittBarak
ML Capability ?! @BrittBarak
Who is afraid of Machine Learning? & First Steps With
ML-Kit @BrittBarak
Britt Barak Developer Experience, Nexmo Google Developer Expert Britt Barak
@brittBarak
None
@BrittBarak
= @BrittBarak
§ What’s the difference? @BrittBarak
…and classify? @BrittBarak
@BrittBarak
This is a strawberry @BrittBarak
This is a strawberry Red Seeds pattern Narrow top leaves
@BrittBarak Pointy at the bottom Round at the top
Strawberry Not Not Not Strawberry Strawberry Not Not Not @BrittBarak
~*~ images ~*~ @BrittBarak
@BrittBarak Vision library
Text Recognition @BrittBarak
Face Detection @BrittBarak
Barcode Scanning @BrittBarak
Image Labelling @BrittBarak
Landmark Recognition @BrittBarak
Custom Models @BrittBarak
Example @BrittBarak
@BrittBarak
@BrittBarak
Detector detector .execute(image) Result: @BrittBarak “Ben & Jerry’s pistachio ice
cream”
1. Setup Detector @BrittBarak
Local or cloud? @BrittBarak
@BrittBarak
Local •Realtime •Offline support •Security / Privacy •Bandwith •… @BrittBarak
Cloud •More accuracy & features •But more latency •Pricing @BrittBarak
1. Setup Detector @BrittBarak
Text Detector textDetector = FirebaseVision.getInstance() @BrittBarak
Text Detector textDetector = FirebaseVision.getInstance() .onDeviceTextRecognizer @BrittBarak
Text Detector textDetector = FirebaseVision.getInstance() .cloudTextRecognizer @BrittBarak
2. Process input @BrittBarak
FirebaseVisionImage •Bitmap •image Uri •Media Image •byteArray •byteBuffer @BrittBarak
image = FirebaseVisionImage.fromBitmap(bitmap) @BrittBarak Text Detector
3. Execute the model @BrittBarak
Text Detector textDetector.processImage(image) @BrittBarak
Text Detector textDetector.processImage(image) .addOnSuccessListener { } @BrittBarak
Text Detector textDetector.processImage(image) .addOnSuccessListener { firebaseVisionTexts -> processOutput(fbVisionTexts) } @BrittBarak
4. Process output @BrittBarak
firebaseVisionTexts.text @BrittBarak
someTextView.text = firebaseVisionTexts.text @BrittBarak UI
Result @BrittBarak
Result @BrittBarak
(another) Example : Labelling @BrittBarak
Detector detector .execute(image) Result: @BrittBarak ice cream pint
Vegetables Deserts Vegetables
1. Setup Detector @BrittBarak
Image Classifier imageDetector = FirebaseVision.getInstance() @BrittBarak
Image Classifier imageDetector = FirebaseVision.getInstance() .visionLabelDetector @BrittBarak
Image Classifier imageDetector = FirebaseVision.getInstance .visionCloudLabelDetector @BrittBarak
2. Process input @BrittBarak
image = FirebaseVisionImage.fromBitmap(bitmap) @BrittBarak Image Classifier
3. Execute the model @BrittBarak
Image Classifier imageDetector.detectInImage(image) @BrittBarak
Image Classifier imageDetector.detectInImage(image) .addOnSuccessListener{ } @BrittBarak
Image Classifier imageDetector.detectInImage(image) .addOnSuccessListener{ fBLabels -> processOutput(fBLabels) } @BrittBarak
4. Process output @BrittBarak
fbLabel.label fbLabel.confidence fbLabel.entityId @BrittBarak
UI for (fbLabel in labels) { s = "${fbLabel.label} :
${fbLabel.confidence}" } @BrittBarak
Result
Result
It is an ML-ful world Enjoy!
Thank you! Keep in touch!