Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Who's Afraid Of Machine Learning? & first steps...
Search
Britt Barak
April 23, 2018
Technology
5
900
Who's Afraid Of Machine Learning? & first steps with TensorFlow
Chicago Roboto & Android Makers 2018
Britt Barak
April 23, 2018
Tweet
Share
More Decks by Britt Barak
See All by Britt Barak
[Vonage] Introducing Conversations
brittbarak
1
120
Kids, Play Nice! Kotlin-Java Interop In Mind
brittbarak
2
440
Sharing is Caring- Getting Started with Kotlin Multiplatform
brittbarak
2
2k
Between JOMO and FOMO: You are reshaping communication.
brittbarak
2
1.2k
Build Apps For The Ones You Love
brittbarak
1
120
What an ML-ful World! MLKit for Android dev.
brittbarak
0
130
Make your app dance with MotionLayout
brittbarak
8
1.4k
Who's afraid of ML? V2 : First steps with MlKit
brittbarak
1
450
Oh, the places you'll go! Cracking Navigation on Android
brittbarak
0
480
Other Decks in Technology
See All in Technology
金融サービスにおける高速な価値提供とAIの役割 #BetAIDay
layerx
PRO
1
740
Lambda management with ecspresso and Terraform
ijin
2
140
【CEDEC2025】大規模言語モデルを活用したゲーム内会話パートのスクリプト作成支援への取り組み
cygames
PRO
2
770
解消したはずが…技術と人間のエラーが交錯する恐怖体験
lamaglama39
0
190
生成AI導入の効果を最大化する データ活用戦略
ham0215
0
110
LLMでAI-OCR、実際どうなの? / llm_ai_ocr_layerx_bet_ai_day_lt
sbrf248
0
430
LIFF CLIとngrokを使ったLIFF/LINEミニアプリのお手軽実機確認
diggymo
0
230
データモデリング通り #2オンライン勉強会 ~方法論の話をしよう~
datayokocho
0
110
いかにして命令の入れ替わりについて心配するのをやめ、メモリモデルを愛するようになったか(改)
nullpo_head
2
150
ホリスティックテスティングの右側も大切にする 〜2つの[はか]る〜 / Holistic Testing: Right Side Matters
nihonbuson
PRO
0
580
人に寄り添うAIエージェントとアーキテクチャ #BetAIDay
layerx
PRO
8
2k
LLMで構造化出力の成功率をグンと上げる方法
keisuketakiguchi
0
460
Featured
See All Featured
Thoughts on Productivity
jonyablonski
69
4.8k
Producing Creativity
orderedlist
PRO
346
40k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.6k
The Straight Up "How To Draw Better" Workshop
denniskardys
235
140k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
Automating Front-end Workflow
addyosmani
1370
200k
Making Projects Easy
brettharned
117
6.3k
Agile that works and the tools we love
rasmusluckow
329
21k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Embracing the Ebb and Flow
colly
86
4.8k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.5k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Transcript
Who’s afraid of Machine Learning? Britt Barak
Britt Barak Google Developer Expert - Android Women Techmakers Israel
Britt Barak @brittBarak
None
None
None
None
None
None
None
None
In a machine...
None
Strawberry Not Strawberry
Input Red Seeds pattern Top leaves 0.64 0.75 0.4
0.64 0.75 0.4 Input Red Seeds pattern Top leaves
0.64 0.75 0.4 Input Red Seeds pattern Top leaves
0.64 0.75 0.4 Input Red Seeds pattern Top leaves
0.64 0.75 0.4 Input 0.5 0.8 0.3 Red Seeds pattern
Top leaves
0.64 0.75 0.4 Input Red Seeds pattern Top leaves 0.5
0.8 0.3 0.5 * 0.64 + 0.8 * 0.75 + 0.3 * 0.4
0.64 0.75 0.4 Input Red Seeds pattern Top leaves 0.5
0.8 0.3 0.5 * 0.64 + 0.8 * 0.75 + 0.3 * 0.4 ___________ 1.04
0.64 0.75 0.4 Input Red Seeds pattern Top leaves 0.5
0.8 0.3 0.5 * 0.64 + 0.8 * 0.75 + 0.3 * 0.4 ___________ 1.04 + 0.7
0.64 0.75 0.4 1.74 0.5 * 0.64 + 0.8 *
0.75 + 0.3 * 0.4 ___________ 1.04 + 0.7 ___________ 1.74 Input Red Seeds pattern Top leaves 0.5 0.8 0.3
0.64 0.75 0.4 1.02 1.74 Input Red Seeds pattern Top
leaves 0.97
0.64 0.75 0.4 Input Red Seeds pattern Top leaves 1.02
1.74 0.97
0.64 0.75 0.4 Output Strawberry Not Strawberry Input Red Seeds
pattern Top leaves 1.02 1.74 0.97 0.87 0.13
0.64 0.75 0.4 0.87 0.13 Strawberry Not Strawberry Output Input
Red Seeds pattern Top leaves 1.02 1.74 0.97
None
0.7 0.03 0.01 3.72 0.89 1.92 Strawberry Not Strawberry Output
Input Red Seeds pattern Top leaves 0.2 0.8
0.7 0.03 0.01 3.72 0.89 1.92 Strawberry Not Strawberry Output
Input Red Seeds pattern Top leaves 0.2 0.8
0.7 0.03 0.01 3.72 0.89 1.92 0.2 0.8 Strawberry Not
Strawberry Output Input Red Seeds pattern Top leaves
0.5 * 0.64 + 0.8 * 0.75 + 0.3 *
0.4 ___________ 1.04 + 0.7 ___________ 1.74 Strawberry Not Not Strawberry Not Not Strawberry Not Not
Training TRAINING
0.64 0.75 0.4 1.02 1.74 0.97 0.89 0.11 Strawberry Not
Strawberry Output Input Red Seeds pattern Top leaves
Strawberry Not Strawberry Output Input Hidden Red Seeds pattern Top
leaves
None
Data science
We get a trained model !
TensorFlow - Open source - Widely used - Flexible for
scale: - 1 or more CPUs / GPUs - desktop, server, mobile device
Strawberry
Strawberry
Strawberry • Bandwidth • Performance • Latency • Network •
Security • Privacy • …
TensorFlow Mobile - Speech Recognition - Image Recognition - Object
Localization - Gesture Recognition - Translation - Text Classification - Voice Synthesis
Lightweight Fast Cross platform
MobileNet Inception-V3 SmartReply Models
None
Image Classifier classifier .classify(bitmap) label
1. Add Assets
None
labels.txt strawberry orange lemon fig pineapple banana jackfruit custard apple
pomegranate hay carbonara chocolate sauce dough meat loaf
2. Add TensorFlow Lite
repositories { maven { url 'https://google.bintray.com/tensorflow' } } dependencies
{ // ... implementation 'org.tensorflow:tensorflow-lite:+' } build.gradle
android { aaptOptions { noCompress "tflite" } } build.gradle
3. Create ImageClassifier.java
Image Classifier
ImageClassifier.java model = loadModelFile(); tflite = new Interpreter();
ImageClassifier.java model = loadModelFile(); tflite = new Interpreter(model);
MappedByteBuffer loadModelFile() { AssetFileDescriptor descriptor= getAssets().openFd(MODEL_PATH);
MappedByteBuffer loadModelFile() { AssetFileDescriptor descriptor= getAssets().openFd(MODEL_PATH); FileInputStream inputStream = new
FileInputStream(descriptor.getFileDescriptor()); FileChannel channel = inputStream.getChannel();
MappedByteBuffer loadModelFile() { AssetFileDescriptor descriptor= getAssets().openFd(MODEL_PATH); FileInputStream inputStream = new
FileInputStream(descriptor.getFileDescriptor()); FileChannel channel = inputStream.getChannel(); long start = descriptor.getStartOffset(); long length = descriptor.getDeclaredLength(); return channel.map(FileChannel.MapMode.READ_ONLY, start, length); }
Image Classifier [strawberry, apple, ... ] labels.txt
ImageClassifier.java model = loadModelFile(); tflite = new Interpreter(model); labelList =
loadLabelList();
labels.txt strawberry orange lemon fig pineapple banana jackfruit custard apple
pomegranate hay carbonara chocolate sauce dough meat loaf
List<String> loadLabelList() throws IOException { InputStreamReader inputStream = new InputStreamReader(getAssets().open(LABEL_PATH));
}
List<String> loadLabelList() throws IOException { InputStreamReader inputStream = new InputStreamReader(getAssets().open(LABEL_PATH));
BufferedReader reader = new BufferedReader(inputStream); }
List<String> loadLabelList() throws IOException { InputStreamReader inputStream = new InputStreamReader(getAssets().open(LABEL_PATH));
BufferedReader reader = new BufferedReader(inputStream); List<String> labelList = new ArrayList<>(); String line; while ((line = reader.readLine()) != null) { labelList.add(line); } }
List<String> loadLabelList() throws IOException { InputStreamReader inputStream = new InputStreamReader(getAssets().open(LABEL_PATH));
BufferedReader reader = new BufferedReader(inputStream); List<String> labelList = new ArrayList<>(); String line; while ((line = reader.readLine()) != null) { labelList.add(line); } reader.close(); return labelList; }
Image Classifier [ [0..6] , [ 0.1 ] , ...
] [strawberry, apple, ... ] probArray labels.txt
probArray = { [0.7], [0.3], [0], [0], } labelList =
{ strawberry, apple, pineapple, banana, } 0.3
ImageClassifier.java model = loadModelFile(); tflite = new Interpreter(model); labelList =
loadLabelList(); probArray = new float[1][labelList.size()];
Image Classifier [......] [ [0..6] , [ 0.1 ] ,
... ] [strawberry, apple, ... ] ByteBuffer probArray labels.txt
ImageClassifier.java model = loadModelFile(); tflite = new Interpreter(model); labelList =
loadLabelList(); probArray = new float[1][labelList.size()]; imgData = ByteBuffer.allocateDirect( DIM_IMG_SIZE_X * DIM_IMG_SIZE_Y * DIM_PIXEL_SIZE); imgData.order(ByteOrder.nativeOrder());
4. Run the model / classify
classifier .classify(bitmap) Image Classifier [......] [ [0..6] , [ 0.1
] , ... ] [strawberry, apple, ... ] ByteBuffer probArray labels.txt
ImageClassifier.java String classify(Bitmap bitmap) { convertBitmapToByteBuffer(imgData, bitmap);
}
void convertBitmapToByteBuffer(Bitmap bitmap) { //... bitmap.getPixels(intValues, 0, bitmap.getWidth(), 0, 0,bitmap.getWidth(),
bitmap.getHeight()); }
void convertBitmapToByteBuffer(Bitmap bitmap) { //... bitmap.getPixels(intValues, 0, bitmap.getWidth(), 0, 0,bitmap.getWidth(),
bitmap.getHeight()); int pixel = 0; for (int i = 0; i < DIM_IMG_SIZE_X; ++i) { for (int j = 0; j < DIM_IMG_SIZE_Y; ++j) { final int val = intValues[pixel++]; imgData.put((byte) ((val >> 16) & 0xFF)); imgData.put((byte) ((val >> 8) & 0xFF)); imgData.put((byte) (val & 0xFF)); } } }
void convertBitmapToByteBuffer(Bitmap bitmap) { //... bitmap.getPixels(intValues, 0, bitmap.getWidth(), 0, 0,bitmap.getWidth(),
bitmap.getHeight()); int pixel = 0; for (int i = 0; i < DIM_IMG_SIZE_X; ++i) { for (int j = 0; j < DIM_IMG_SIZE_Y; ++j) { final int val = intValues[pixel++]; imgData.put((byte) ((val >> 16) & 0xFF)); imgData.put((byte) ((val >> 8) & 0xFF)); imgData.put((byte) (val & 0xFF)); } } }
ImageClassifier.java String classify(Bitmap bitmap) { convertBitmapToByteBuffer(imgData, bitmap); tflite.run(imgData,
probArray); }
ImageClassifier.java String classify(Bitmap bitmap) { convertBitmapToByteBuffer(imgData, bitmap); tflite.run(imgData,
probArray); String textToShow = getTopLabels(); return textToShow; }
Strawberry - 0.87 Apple - 0.13 Tomato - 0.01
Machine Learning is a new world
Links - Tensorflow - https://www.tensorflow.org/ - Tensorflow lite - https://www.tensorflow.org/mobile/tflite/
- Codes labs - codelabs.developers.google.com/codelabs/tensorflow-for-poets-2-tflite/ - Google’s Machine Learning Crash Course - developers.google.com/machine-learning/crash-course/ - [Dr. Joe Dispenza]
Thank you! Keep in touch! Britt Barak @brittBarak