Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Who's Afraid Of Machine Learning? & first steps...
Search
Britt Barak
April 23, 2018
Technology
5
890
Who's Afraid Of Machine Learning? & first steps with TensorFlow
Chicago Roboto & Android Makers 2018
Britt Barak
April 23, 2018
Tweet
Share
More Decks by Britt Barak
See All by Britt Barak
[Vonage] Introducing Conversations
brittbarak
1
120
Kids, Play Nice! Kotlin-Java Interop In Mind
brittbarak
2
440
Sharing is Caring- Getting Started with Kotlin Multiplatform
brittbarak
2
2k
Between JOMO and FOMO: You are reshaping communication.
brittbarak
2
1.2k
Build Apps For The Ones You Love
brittbarak
1
120
What an ML-ful World! MLKit for Android dev.
brittbarak
0
130
Make your app dance with MotionLayout
brittbarak
8
1.4k
Who's afraid of ML? V2 : First steps with MlKit
brittbarak
1
450
Oh, the places you'll go! Cracking Navigation on Android
brittbarak
0
480
Other Decks in Technology
See All in Technology
GitHub Copilot の概要
tomokusaba
1
150
より良いプロダクトの開発を目指して - 情報を中心としたプロダクト開発 #phpcon #phpcon2025
bengo4com
1
3.2k
AWS テクニカルサポートとエンドカスタマーの中間地点から見えるより良いサポートの活用方法
kazzpapa3
2
600
mrubyと micro-ROSが繋ぐロボットの世界
kishima
2
380
Node-RED × MCP 勉強会 vol.1
1ftseabass
PRO
0
180
5min GuardDuty Extended Threat Detection EKS
takakuni
0
180
さくらのIaaS基盤のモニタリングとOpenTelemetry/OSC Hokkaido 2025
fujiwara3
2
230
プロダクトエンジニアリング組織への歩み、その現在地 / Our journey to becoming a product engineering organization
hiro_torii
0
140
生成AI活用の組織格差を解消する 〜ビジネス職のCursor導入が開発効率に与えた好循環〜 / Closing the Organizational Gap in AI Adoption
upamune
5
4.5k
PHPでWebブラウザのレンダリングエンジンを実装する
dip_tech
PRO
0
220
MySQL5.6から8.4へ 戦いの記録
kyoshidaxx
1
300
作曲家がボカロを使うようにPdMはAIを使え
itotaxi
0
380
Featured
See All Featured
For a Future-Friendly Web
brad_frost
179
9.8k
A designer walks into a library…
pauljervisheath
207
24k
Navigating Team Friction
lara
187
15k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Making Projects Easy
brettharned
116
6.3k
Embracing the Ebb and Flow
colly
86
4.7k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
181
53k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
20
1.3k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.5k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.7k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.4k
Transcript
Who’s afraid of Machine Learning? Britt Barak
Britt Barak Google Developer Expert - Android Women Techmakers Israel
Britt Barak @brittBarak
None
None
None
None
None
None
None
None
In a machine...
None
Strawberry Not Strawberry
Input Red Seeds pattern Top leaves 0.64 0.75 0.4
0.64 0.75 0.4 Input Red Seeds pattern Top leaves
0.64 0.75 0.4 Input Red Seeds pattern Top leaves
0.64 0.75 0.4 Input Red Seeds pattern Top leaves
0.64 0.75 0.4 Input 0.5 0.8 0.3 Red Seeds pattern
Top leaves
0.64 0.75 0.4 Input Red Seeds pattern Top leaves 0.5
0.8 0.3 0.5 * 0.64 + 0.8 * 0.75 + 0.3 * 0.4
0.64 0.75 0.4 Input Red Seeds pattern Top leaves 0.5
0.8 0.3 0.5 * 0.64 + 0.8 * 0.75 + 0.3 * 0.4 ___________ 1.04
0.64 0.75 0.4 Input Red Seeds pattern Top leaves 0.5
0.8 0.3 0.5 * 0.64 + 0.8 * 0.75 + 0.3 * 0.4 ___________ 1.04 + 0.7
0.64 0.75 0.4 1.74 0.5 * 0.64 + 0.8 *
0.75 + 0.3 * 0.4 ___________ 1.04 + 0.7 ___________ 1.74 Input Red Seeds pattern Top leaves 0.5 0.8 0.3
0.64 0.75 0.4 1.02 1.74 Input Red Seeds pattern Top
leaves 0.97
0.64 0.75 0.4 Input Red Seeds pattern Top leaves 1.02
1.74 0.97
0.64 0.75 0.4 Output Strawberry Not Strawberry Input Red Seeds
pattern Top leaves 1.02 1.74 0.97 0.87 0.13
0.64 0.75 0.4 0.87 0.13 Strawberry Not Strawberry Output Input
Red Seeds pattern Top leaves 1.02 1.74 0.97
None
0.7 0.03 0.01 3.72 0.89 1.92 Strawberry Not Strawberry Output
Input Red Seeds pattern Top leaves 0.2 0.8
0.7 0.03 0.01 3.72 0.89 1.92 Strawberry Not Strawberry Output
Input Red Seeds pattern Top leaves 0.2 0.8
0.7 0.03 0.01 3.72 0.89 1.92 0.2 0.8 Strawberry Not
Strawberry Output Input Red Seeds pattern Top leaves
0.5 * 0.64 + 0.8 * 0.75 + 0.3 *
0.4 ___________ 1.04 + 0.7 ___________ 1.74 Strawberry Not Not Strawberry Not Not Strawberry Not Not
Training TRAINING
0.64 0.75 0.4 1.02 1.74 0.97 0.89 0.11 Strawberry Not
Strawberry Output Input Red Seeds pattern Top leaves
Strawberry Not Strawberry Output Input Hidden Red Seeds pattern Top
leaves
None
Data science
We get a trained model !
TensorFlow - Open source - Widely used - Flexible for
scale: - 1 or more CPUs / GPUs - desktop, server, mobile device
Strawberry
Strawberry
Strawberry • Bandwidth • Performance • Latency • Network •
Security • Privacy • …
TensorFlow Mobile - Speech Recognition - Image Recognition - Object
Localization - Gesture Recognition - Translation - Text Classification - Voice Synthesis
Lightweight Fast Cross platform
MobileNet Inception-V3 SmartReply Models
None
Image Classifier classifier .classify(bitmap) label
1. Add Assets
None
labels.txt strawberry orange lemon fig pineapple banana jackfruit custard apple
pomegranate hay carbonara chocolate sauce dough meat loaf
2. Add TensorFlow Lite
repositories { maven { url 'https://google.bintray.com/tensorflow' } } dependencies
{ // ... implementation 'org.tensorflow:tensorflow-lite:+' } build.gradle
android { aaptOptions { noCompress "tflite" } } build.gradle
3. Create ImageClassifier.java
Image Classifier
ImageClassifier.java model = loadModelFile(); tflite = new Interpreter();
ImageClassifier.java model = loadModelFile(); tflite = new Interpreter(model);
MappedByteBuffer loadModelFile() { AssetFileDescriptor descriptor= getAssets().openFd(MODEL_PATH);
MappedByteBuffer loadModelFile() { AssetFileDescriptor descriptor= getAssets().openFd(MODEL_PATH); FileInputStream inputStream = new
FileInputStream(descriptor.getFileDescriptor()); FileChannel channel = inputStream.getChannel();
MappedByteBuffer loadModelFile() { AssetFileDescriptor descriptor= getAssets().openFd(MODEL_PATH); FileInputStream inputStream = new
FileInputStream(descriptor.getFileDescriptor()); FileChannel channel = inputStream.getChannel(); long start = descriptor.getStartOffset(); long length = descriptor.getDeclaredLength(); return channel.map(FileChannel.MapMode.READ_ONLY, start, length); }
Image Classifier [strawberry, apple, ... ] labels.txt
ImageClassifier.java model = loadModelFile(); tflite = new Interpreter(model); labelList =
loadLabelList();
labels.txt strawberry orange lemon fig pineapple banana jackfruit custard apple
pomegranate hay carbonara chocolate sauce dough meat loaf
List<String> loadLabelList() throws IOException { InputStreamReader inputStream = new InputStreamReader(getAssets().open(LABEL_PATH));
}
List<String> loadLabelList() throws IOException { InputStreamReader inputStream = new InputStreamReader(getAssets().open(LABEL_PATH));
BufferedReader reader = new BufferedReader(inputStream); }
List<String> loadLabelList() throws IOException { InputStreamReader inputStream = new InputStreamReader(getAssets().open(LABEL_PATH));
BufferedReader reader = new BufferedReader(inputStream); List<String> labelList = new ArrayList<>(); String line; while ((line = reader.readLine()) != null) { labelList.add(line); } }
List<String> loadLabelList() throws IOException { InputStreamReader inputStream = new InputStreamReader(getAssets().open(LABEL_PATH));
BufferedReader reader = new BufferedReader(inputStream); List<String> labelList = new ArrayList<>(); String line; while ((line = reader.readLine()) != null) { labelList.add(line); } reader.close(); return labelList; }
Image Classifier [ [0..6] , [ 0.1 ] , ...
] [strawberry, apple, ... ] probArray labels.txt
probArray = { [0.7], [0.3], [0], [0], } labelList =
{ strawberry, apple, pineapple, banana, } 0.3
ImageClassifier.java model = loadModelFile(); tflite = new Interpreter(model); labelList =
loadLabelList(); probArray = new float[1][labelList.size()];
Image Classifier [......] [ [0..6] , [ 0.1 ] ,
... ] [strawberry, apple, ... ] ByteBuffer probArray labels.txt
ImageClassifier.java model = loadModelFile(); tflite = new Interpreter(model); labelList =
loadLabelList(); probArray = new float[1][labelList.size()]; imgData = ByteBuffer.allocateDirect( DIM_IMG_SIZE_X * DIM_IMG_SIZE_Y * DIM_PIXEL_SIZE); imgData.order(ByteOrder.nativeOrder());
4. Run the model / classify
classifier .classify(bitmap) Image Classifier [......] [ [0..6] , [ 0.1
] , ... ] [strawberry, apple, ... ] ByteBuffer probArray labels.txt
ImageClassifier.java String classify(Bitmap bitmap) { convertBitmapToByteBuffer(imgData, bitmap);
}
void convertBitmapToByteBuffer(Bitmap bitmap) { //... bitmap.getPixels(intValues, 0, bitmap.getWidth(), 0, 0,bitmap.getWidth(),
bitmap.getHeight()); }
void convertBitmapToByteBuffer(Bitmap bitmap) { //... bitmap.getPixels(intValues, 0, bitmap.getWidth(), 0, 0,bitmap.getWidth(),
bitmap.getHeight()); int pixel = 0; for (int i = 0; i < DIM_IMG_SIZE_X; ++i) { for (int j = 0; j < DIM_IMG_SIZE_Y; ++j) { final int val = intValues[pixel++]; imgData.put((byte) ((val >> 16) & 0xFF)); imgData.put((byte) ((val >> 8) & 0xFF)); imgData.put((byte) (val & 0xFF)); } } }
void convertBitmapToByteBuffer(Bitmap bitmap) { //... bitmap.getPixels(intValues, 0, bitmap.getWidth(), 0, 0,bitmap.getWidth(),
bitmap.getHeight()); int pixel = 0; for (int i = 0; i < DIM_IMG_SIZE_X; ++i) { for (int j = 0; j < DIM_IMG_SIZE_Y; ++j) { final int val = intValues[pixel++]; imgData.put((byte) ((val >> 16) & 0xFF)); imgData.put((byte) ((val >> 8) & 0xFF)); imgData.put((byte) (val & 0xFF)); } } }
ImageClassifier.java String classify(Bitmap bitmap) { convertBitmapToByteBuffer(imgData, bitmap); tflite.run(imgData,
probArray); }
ImageClassifier.java String classify(Bitmap bitmap) { convertBitmapToByteBuffer(imgData, bitmap); tflite.run(imgData,
probArray); String textToShow = getTopLabels(); return textToShow; }
Strawberry - 0.87 Apple - 0.13 Tomato - 0.01
Machine Learning is a new world
Links - Tensorflow - https://www.tensorflow.org/ - Tensorflow lite - https://www.tensorflow.org/mobile/tflite/
- Codes labs - codelabs.developers.google.com/codelabs/tensorflow-for-poets-2-tflite/ - Google’s Machine Learning Crash Course - developers.google.com/machine-learning/crash-course/ - [Dr. Joe Dispenza]
Thank you! Keep in touch! Britt Barak @brittBarak